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Extreme multistability in a Josephson-junction-based circuit
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We design and report an electrical circuit using a Josephson junction under periodic forcing that reveals
extreme multistability. Its overall state equations surprisingly recall those of a well-known model of Josephson
junction initially introduced in our circuit. The final circuit is characterized by the presence of two new and
different current sources in parallel with the nonlinear internal current source sin[φ(t )] of the Josephson junction
single electronic component. Furthermore, the model presents an interesting extreme multistability which is
justified by a very large number of different attractors (chaotic or not) when slightly changing the initial
conditions.
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Multistability is characterized by a large number of coex-
isting attractors of many flavors, such as fixed points, limit
cycles, and periodic or chaotic attractors, just for a given
fixed set of parameters [1,2]. Many studies have addressed
this phenomenon in a wide range of systems including elec-
tronic circuits [3], lasers [4], Josephson junctions (JJ) [5],
biological systems [6], ecological systems [7,8], chemical
reactions [9], and living neural systems [10]. The existence of
a large number of attractors creates a complex structure in the
landscape of basins of attraction and sometimes the systems
may become extremely sensitive to small perturbations on
the initial conditions. As a consequence, we can observe new
qualitative behaviors. Also, small variations on the value of
parameters sometimes cause dramatic changes due to change
in the number of coexisting attractors, i.e., attractors appear
and disappear quickly when a system parameter is varied
[11]. This situation, for instance, may correspond to critical
thresholds, such as tipping points [12], which are of great
interest in the context of environment science, climate change,
neuroscience, and social systems [13–15]. Here we address a
circuit based on a Josephson-junction model to study multi-
stability.

Cawthorne et al. proposed a Josephson-junction model
that includes a resistive-capacitive-inductive shunting [16]. It
consists of a resistive-capacitive-inductive shunted junction
that has been used several times to produce chaotic dynamics
[17,18]. In these specific references, the authors took ad-
vantage of its resistive-capacitive-inductive structure to ob-
tain many interesting dynamical behaviors. Apart from these,
Frolov et al. [19] developed a method to measure the current-
phase relation of a π JJ, characterized by the minimum energy
state being at a phase difference of π across the junction. Their
technique was based on the relation IL = φ(t )/L, where L is

the inductor in parallel to the superconductor-ferromagnet-
superconductor Josephson junction and IL is the current flow-
ing through L (see Eqs. (3) and Fig. 2(a) in Ref. [19]). It can be
noticed that the above expression of IL is a particular solution
of the equation LİL(t ) = φ̇(t ), when the initial conditions
of IL(t ) and φ(t ) respect the relation φ(0)/L − IL(0) = 0.
What can happen if we assume that this relation between the
initial conditions is not achieved, i.e., φ(0)/L − IL(0) �= 0?
This case is investigated in this article. To our surprise, we
found that extreme multistable solutions exist as well as other
interesting results, which will be described below.

The JJ is a device that has an internal state variable φ(t )
expressed as φ̇(t ) = Vj where Vj is the voltage at points A
and B of the circuit shown in Fig. 1. Thus, the dynamical
stability of a chaotic circuit that contains a JJ could be
closely dependent on the initial state of the JJ itself, as in
the case of memristor-based chaotic circuits [20,21]. If that
idea holds, then it may become possible to obtain the coexis-
tence of infinitely many different attractors in the considered
circuits. This gives rise to extreme multistability, where a
tiny disturbance in the initial conditions may lead to different
chaotic basins of attraction [22–27]. The existing literature
already shows this phenomenon, which, to the best of our
knowledge, has mostly been seen in coupled chaotic systems
[22–27]. Within these works, we can recall Ref. [27], where
the authors describe a method to construct self-reproducing
systems for a unique class of systems. The method is based
on a sliding of the variable that appear only as a linear term
and the sliding constant is, in their own words, “an offset
boosting controller for the variable; specifically the added
constant can easily change the signal between unipolar and
bipolar as desired for engineering applications since in many
cases a specific physical circuit can only accept a unipolar
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FIG. 1. Schematic diagram of the modified JJ extreme multi-
stable circuit. This circuit is constituted of a Josephson junction
element (blue part of the circuit [17,28–31]) connected in parallel to
an induction L which is part of a nonautonomous C1-L-C2 resonator.
The corresponding labels are defined in the text.

signal or a bipolar signal.” (See p. 1750160-3, Ref. 27.) Thus,
Ref. [27] seems to present the first single system that shows
extreme multistability. Recently, Bao et al. [20] investigated
the extreme multistability in an uncoupled system consisting
of a Chua’s circuit with a memristor-based nonlinearity. In this
paper, we propose a system that includes a superconducting
junction model which shows extreme multistability.

In the present work, we introduce an electric circuit with
a Josephson junction under periodic forcing that reveals ex-
treme multistability within sufficiently large parameter inter-
vals suitable to possible experiments, as shown in Fig. 1. The
rest of this work is organized as follows: Section 1 describes
the mathematical modeling of the electric circuit and proposes
an answer to the abovementioned question through some sim-

ulations. In Sec. II, the phenomenon of extreme multistability
in the circuit is reported and justified, while Sec. III concludes
the work.

I. THE CIRCUIT AND ITS MODEL

Figure 1 depicts the simple electrical circuit under study. A
single-component JJ is connected in parallel to the inductor
L, which is part of the C1-L-C2 tank circuit series with a
periodic forcing, while the JJ, the nonlinear element, plays the
feedback loop in this chaotic circuit.

Applying the Kirchhoff laws on Fig. 1, at nodes A and B,

i1 = i2 = I + i with I = i j + iC + ir, (1)

where i j (t ) = sin[φ(t )]. Furthermore, i1(t ) = C1V̇1(t ), ic(t ) =
CjV̇j (t ), and ir (t ) = Vj (t )

Rj
. From the loop formed by [e(t ), C1,

L, and C2], the voltage equation is given as

e(t ) − V1(t ) − VL(t ) − V2(t ) = 0 with VL = Vj . (2)

Without loss of generality, we consider C1 = C2 = C. This
leads to V1(t ) = V2(t ) = V (t ), since i1(t ) = i2(t ), and we can
easily impose the initial condition of the capacitors Ci, i =
1, 2 to zero in practice. Therefore,

CV̇ (t ) = I (t ) + i(t ). (3)

The time derivative of the loop relation Eq. (2) gives V̇ (t ) =
ė(t )−V̇j (t )

2 . Taking into account the node relations, Eq. (1),

I (t ) = C

2
[ė(t ) − V̇j (t )] − i(t ). (4)

Then, from the JJ (blue part of the circuit in Fig. 1),

V̇j (t ) = 1

Cj

[
I (t ) − sin(φ) − Vj (t )

Rj

]
. (5)

The last two equations lead to

V̇j (t ) = 2C

C + 2Cj

[
ė(t )

2
− 1

C
sin(φ) − Vj (t )

RjC
− 1

C
i(t )

]
. (6)

Let us remember that Li̇(t ) = VL(t ) = Vj (t ) and φ̇(t ) = Vj (t ).
It implies that

i(t ) = 1

L
φ(t ) + 1

L
φ(0) − i(0). (7)

Thus, it follows that

V̇j (t )= 2C

C + 2Cj

[
ė(t )

2
− 1

C
sin(φ) − Vj (t )

RjC
− 1

LC
φ(t ) − p

]
,

(8)

where p = 1
LC φ(0) − 1

C i(0).
Finally, the dynamics of our system is described by the

following set of first-order ordinary differential equations:

φ̇(t ) = Vj (t ), (9a)

V̇j (t ) = 2C

C + 2Cj

[
ė(t )

2
− 1

C
sin(φ) − Vj (t )

RjC
− 1

LC
φ(t ) − p

]
.

(9b)
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FIG. 2. (a) Domain of chaos (white dots) and regularity (black
region) while varying simultaneously e0 and the parameter p with a
fixed value of xi(0) = 0, i = 1, 2. This graph also shows that for p =
0 the system displays different behaviors when changing the value of
e0 for a1 = 0.21, a2 = 0.001, a3 = 0.2, w = 0.2, β = 10, and xi =
0, i = 1, 2. The parameters are fixed at β = 10 and xi(0) = 0, i =
1, 2. As x1(0) = 0, this particular case of p = 0 [meaning i(0) = 0]
can be obtained by a discharge of the coil L. (b) Gallery of attractors
as a function of p with a1 = 0.21, a2 = 0.001, a3 = 0.2, w = 0.2,
e0 = 0.51, β = 10, and xi(0) = 0, i = 1, 2.

To facilitate the discussion, we define new variables:
x1(t ) = φ(t ), x2(t ) = Vj (t ), e0, and w are respectively the
amplitude and the frequency of ė(t )

2 , t = �τ , and β = 2�C
C+2Cj

,

where � is a well-chosen constant, a1 = 1
C , a2 = 1

RjC
, and

a3 = 1
LC , such that the circuit represented in Fig. 1 becomes

dimensionless:

ẋ1(τ ) = x2(τ ), ẋ2(τ ) = β{e0sin(wτ ) − a1sin[x1(τ )]

−a2x2(τ ) − a3x1(τ )} − βp. (10)

To look at the influence of parameter p = φ(0)/Lj − i(0),
we first fix the initial condition xi(0) = 0, i = 1, 2. [Let us
recall that x1(t ) = φ(t ) and x2(t ) = Vj (t ) are the only state
variables. Thus, if xi(0), i = 1, 2 are fixed to zero, varying p
implies varying i(0) and that leads us to a sort of bifurcation
diagram such as in Fig. 2(b), where the dynamics, as shown by
the attractors, changes from chaos to regularity or from high to
low amplitudes.] Figure 2(a) is a 2D projection of the largest
Lyapunov exponent that gives beautiful structured domains of
chaos and of regularity. The sign of the Lyapunov exponent
(negative and positive) is represented by black and white re-
spectively. This graph, obtained by varying the parameters e0

and i(0) for fixed xi(0) = 0, i = 1, 2 exhibits a symmetry with
respect to the origin (0,0). Having the possibility of varying
the initial conditions of the external inductor L could be of
great advantage in applications such as chaos-based secure
communication [32,33], since the external initial condition
i(0) can be used as the information that has to be securely
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FIG. 3. Largest Lyapunov exponent and the corresponding bifur-
cation diagram obtained by varying x1(0) for a constant value of
p = 0 in panels (a) and (b), All other parameters are kept constant
at x2(0) = 0, e0 = 1, w = 0.2, a1 = 0.21, a2 = 0.001, a3 = 0.2, and
β = 0.1.

encrypted. Figure 2(b) gives a gallery of different attractors
obtained as a function of p [meaning, i(0), the charge of
the inductor while we set in motion the circuit] with a1 =
0.21, a2 = 0.001, a3 = 0.2, w = 0.2, e0 = 0.51, β = 10, and
xi = 0, i = 1, 2. As x1(0) = 0, the particular case of p = 0
[meaning i(0) = 0] can be obtained by a discharge of the coil
L. Even if these graphs on Fig. 2 are sort of typical bifurcation
diagram according to p, they help to answer the question
related to p by showing that it could modify the measurement
of the current-phase relation of a π JJ [19].

II. EXTREME MULTISTABILITY

Changing initial conditions in our model leads to different
dynamics and to the coexistence of many attractors. This phe-
nomenon defines the extreme multistability behavior [22–24].
Considering p, given as p = 1

LC φ(0) − 1
C i(0), different from

zero could be questionable since such integration constant
usually appears in the solution as an emergent property and
it is not common in practice to add them in a model when
anyone writes the equations using Kirchoff’s law in a circuit.
In this section, we investigate whether the system given by
Eq. (10) is showing extreme multistability when p = 0. Keep-
ing β = 0.1, x2(0) = 0, e0 = 1, w = 0.2, a1 = 0.21, a2 =
0.001, and a3 = 0.2 shows us that varying the initial condition
x1(0) (see Fig. 3) and x2(0) (see Fig. 4) implies changing the
dynamics of the system, Eq. (10).

In this work, we have shown that a single electrical circuit
using a Josephson junction model, for which a mathematical
model is given by Eq. (10), suggests naturally without any
transformation the presence of extreme multistability. The
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FIG. 4. Largest Lyapunov exponent and the corresponding bifur-
cation diagram obtained by varying x2(0) for a constant value of
p = 0 in panels (a) and (b), All other parameters are kept constant
at x1(0) = 0, e0 = 1, w = 0.2, a1 = 0.21, a2 = 0.001, a3 = 0.2, and
β = 0.1.

graph on Fig. 5 shows the plot of the sign of the largest
Lyapunov exponent, represented in black and white, as a
function of the initial conditions x1(0) and x2(0) in order
to show the distribution of regions of chaos (black) and
regularity (white) [34]. This graph reveals the intermingling
basin that usually represents the extreme multistability. For
this result, the unchanged parameters are the same as in Figs. 4
and 3.

III. CONCLUSION

We have designed a simple Josephson-junction-based elec-
trical circuit that shows an interesting extreme multistability
dynamics shown by Fig. 4(b). This conclusion is strengthened
by the plot of Fig. 5 since this graph reveals the intermingling
basin that usually represents the extreme multistability. The

FIG. 5. Plot of the sign of the largest Lyapunov exponent, repre-
sented in black and white, as a function of the initial conditions x1(0)
and x2(0) in order to show the distribution of regions of chaos (black)
and regularity (white). For this result, the unchanged parameters are
the same as in Figs. 4 and 3.

circuit we are dealing with is a phase-sensitive dissipative
device, as suggested by Eq. (10), whose dependence on initial
conditions reminds us of the behavior in systems with con-
servation laws, such as in ensembles of two-level atoms with
a coherent feedback [35]. This behavior is illustrated by gal-
leries of attractors given in Fig. 3 and supported by the bifur-
cation diagram and Lyapunov exponent depicted in Figs. 3 and
5. Thus, the answer to the question posed in the introduction
of this article is now clear: It is possible that the initial charge
of the coil influences the measurement of the current-phase
relation of a π JJ [19]. However, we think that further investi-
gations are needed for a better exploration and understanding
of other aspects that this model may still be hiding.
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