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Energy-level statistics and time relaxation in quantum systems
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We study a quantum-mechanical system, prepared, att50, in a model state, that subsequently decays into
a sea of other states whose energy levels form a discrete spectrum with given statistical properties. An
important quantity is thesurvival probability P(t), defined as the probability, at timet, to find the system in
the original model state. Our main purpose is to analyze the influence of the discreteness and statistical
properties of the spectrum on the behavior ofP(t). SinceP(t) itself is a statistical quantity, we restrict our
attention to its ensemble average^P(t)&, which is calculated analytically using random-matrix techniques,
within certain approximations discussed in the text. We find, for^P(t)&, an exponential decay, followed by a
revival, governed by the two-point structure function of the statistical spectrum, thus giving a nonzero
asymptotic value for larget ’s. The analytic result compares well with a number of computer simulations, over
a time range discussed in the text.@S1063-651X~97!03603-9#

PACS number~s!: 05.40.1j, 05.70.Ln, 72.15.Lh
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I. INTRODUCTION

The problem of finding the time relaxation of a quantu
mechanical system after it has been prepared in some m
state is of great interest in many fields of physics. Perh
one of the oldest examples goes back to the analysis
Weisskopf and Wigner@1# of a decaying state. The mai
features of the derivation can be obtained in the follow
schematic model. The stateul& is coupled att50 to an
infinite discrete spectrum of equally spaced levelsun&, D
being the level spacing, via the matrix elemen
vn5^ i uvun&, assumed to be independent ofn: vn5v. Then,
taking the continuum limitD→0 (un&→uE&), subject to the
condition 2pv2/D5G ~whereG is a constant), thesurvival
probability, i.e., the probability of finding the system in sta
ul& at time t, is found to have the familiar exponential b
haviorP(t)5e2Gt ~in units in which\[1).

The above schematic model can be taken as the para
for a number of physical applications. Consider, for instan
the quasiparticle concept in many-body theory@2#. In this
case, the model stateul& can be taken to represent a sing
particle state, which is coupled to the remaining states via
two-body interaction. For a bound system, the result
width is sometimes known as the ‘‘spreading width.’’ Act
ally, various Green function techniques have been develo
to treat this problem@2#. Still in the framework of many-
body theory, one can put in the above language the impor
problem of describing the resonances generated by the d
of ‘‘bound states embedded in the continuum’’ via the tw
body interaction@3#. Actually, the general problem of reso
nance decay in scattering theory and the deviations from
pure exponential decay have been of interest to severa
thors over the years: see, e.g., Ref.@4#, and the reference
cited therein. Another problem that fits the above sche
and was of interest a few decades ago in the realm of nuc
551063-651X/97/55~6!/6370~7!/$10.00
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physics is the decay, via the Coulomb interaction, of a s
of good isospin embedded in a sea of states of a diffe
isospin@5#, and the related spreading width.

In the case of a bound system, the spectrum the mo
state decays into is discrete; in the approaches indic
above, the influence, in the relaxation process, of the
creteness of the spectrum or its statistical properties was
contemplated. In contrast, Ref.@6# and some of the refer
ences cited there consider the relaxation of a harmonic o
lator coupled to a bath ofN harmonic oscillators with
equally spaced frequencies (D being the spacing!, without
taking the continuum limit. In theN→` limit an exponential
decay is found, with a revival att r'2p/D and multiples
thereof. Reference@7# discusses the dynamics of an electr
inside a chaotic quantum dot~for a review of quantum dots
see Ref.@8#!: the analysis considers the time evolution of t
probability to find the particle at a pointr2 if it was located
at r1 at t50. Using supersymmetry methods, it is found th
quantum interference, the discreteness of the energy s
trum, and the corresponding level statistics lead to a n
trivial time-dependent behavior governed by the Four
transform of the two-level correlation function@9,10# ~see
also Refs.@11,12#!. A similar statement is made, withou
proof, in Ref. @13#: there, a wave packet is constructed
t50 as a linear combination ofN states—contained in a
stretch of energydE, the mean spacing beingD—obeying
one of the random-matrix statistics@9,10#; it is stated that the
ensemble-averaged survival probability is governed by
Fourier transform of the two-level correlation function,
agreement with Ref.@7#.

The purpose of the present paper is to analyze the in
ence of the discreteness and statistical properties of the s
trum in the survival probabilityP(t) of a model state. The
analysis is performed in a language entirely similar to t
described at the beginning of this Introduction in connect
6370 © 1997 The American Physical Society
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55 6371ENERGY-LEVEL STATISTICS AND TIME RELAXATION . . .
with the Weisskopf-Wigner model, but using a rando
matrix spectrum instead of an equally spaced one and w
out ever taking the continuum limit. The ensemble avera
^P(t)& is calculated using random-matrix techniques:
though the calculation is performed within certain appro
mations to be defined below, we found the simplicity of t
derivation appealing.

In the next section we define the model and solve
corresponding time-independent Schro¨dinger equation. The
survival probability and its ensemble average are calcula
in Sec. III, where a comparison with numerical simulations
also presented.

II. THE MODEL. THE TIME-INDEPENDENT SOLUTION

In the Introduction we described a number of physi
systems in which the relaxation of a model stateul& into a
‘‘sea’’ of levels um& via a residual interaction is of grea
interest. In this section we propose a model for this probl
and analyze the solution of the corresponding tim
independent Schro¨dinger equation. The time-depende
solution—the topic of main interest in this paper—will b
studied in the next section.

The statesul& and um& are assumed to be solutions of a
unperturbed HamiltonianH0,

~El2H0!ul&50,

~Em2H0!um&50, ~1!

El being embedded in the sea of levelsEm . The total Hamil-
tonian is

H5H01v, ~2!

where the residual interactionv only couples the stateul&
with the statesum&; i.e., its only nonzero matrix elements a

^luvum&5vlm . ~3!

Some of the properties of the solutions of the compl
Schrödinger equation

~Ei2H !u i &50 ~4!

can be obtained in an elementary way, as discussed in R
@5,14# and briefly indicated in what follows. Expanding th
eigenstatesu i & in terms oful& and um& as

u i &5

ul&1(
m

cm
~ i !um&

A11(
m

ucmu2
, ~5!

we can write Eq.~4! as the system of coupled equations

El1(
m

vlmcm5E,

vml1Emcm5Ecm , ~6!
-
h-
e
-
-

e

d
s

l

-

e

fs.

whose solutions are the eigenvaluesEi and the eigenvecto
componentscm

( i ) . We find, forcm ,

cm5
vml

E2Em
, ~7!

which can thus be eliminated from Eqs.~6! to give, forE, the
dispersionlike relation

(
m

uvlmu2

Em2E
5El2E. ~8!

A plot of the two sides of Eq.~8! as a function ofE gives the
solutionsEi as the abscissas of the intersections. We can
that there is a solution between every two successiveEm’s,
and one smaller and one larger than all theEm’s. The solu-
tionsEi approachEm as we go ever farther away fromEl .

The ‘‘strength function,’’ i.e., the probability of finding
the model stateul& in the exact eigenstateu i &, is given, from
Eqs.~5! and ~7!, by

wi[ z^lu i & z25
1

11(
m

@vlm /~Ei2Em!#2
. ~9!

We shall see in the next section@see Eq.~30!# that the
strength function plays an important role in the calculation
the time-dependent survival probability; we thus devote
rest of this section to studying some of its properties.

Since the stateul& is normalized, thewi ’s obey the sum
rule

(
i
wi51. ~10!

Far away fromEl , whereEi'Em , Eq. ~8! allows writing
wi as

wi'
uvlmu2

~El2Ei !
2 , ~11!

in agreement with perturbation theory.
It is interesting that for a ‘‘picket-fence’’~PF! model, in

which the Em’s are equally spaced—their distance bei
D—and infinite in number, and all theuvlmu25v2, the
strength function can be found exactly as

wi
PF5

v2

~Ei2El!21~G/2!2
, ~12!

i.e., aLorentzianof width

G5
2pv2

D F11S D

pv D
2G1/2, ~13!

which in turn goes over, in the continuum limit, to the res
mentioned in the Introduction.

In the model with which are we concerned, the ener
levelsEm are assumed to obey some statistical distribut
with constant average spacingD and to be infinite in num-
ber; we suppose, for simplicity, that all theuvlmu25v2. The
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6372 55GRUVER, ALIAGA, CERDEIRA, MELLO, AND PROTO
strength functionwi will then depend not only onEi , as for
the PF, Eq.~12!, but also on all the otherEj ’s. This last
dependence is negligible far fromEl , as Eq.~11! shows, but
this may not be the case in other regions. We representwi as

wi5w~Ei !1dwi . ~14!

Here,w(Ei) is a continuous function of its argument th
represents, for fixedEi , an average over all the other level
dwi represents the fluctuations around that average and
averages to zero for fixedEi ~its full ensemble average thu
vanishes too:̂dwi&50). The sum rule~10! reads

(
i
w~Ei !1(

i
dwi51. ~15!

The first term, i.e.,

W5(
i
w~Ei !, ~16!

is a statistical quantity, because theEi ’s fluctuate from
sample to sample: it is actually a linear statistic, in the la
guage of Dyson and Mehta@15#. ThusW fluctuates around

^W&51 ~17!

@the magnitude of the fluctuations will be found below,
Eq. ~25!#; but W, added to the second term in Eq.~15!,
always gives 1. Since theEi ’s occur symmetrically in the
distribution function, the probability densityp(Ei) for a
single eigenvalue is identical for alli ’s. For N levels in an
intervalL, p(Ei)51/L and Eq.~17! gives

15N^w~E1!&5NE
L
w~E!

dE

L
. ~18!

Letting N, L→`, with L/N5D, we find

1

DE w~E!dE51. ~19!

Inspired by the behavior ofWi far fromEl @see Eq.~11!#
and the result for the PF Eq.~12!, we propose, a simple
model forw(Ei), the Lorentzian

w~Ei !5
GD/2p

~Ei2El!21~G/2!2
, ~20!

that has been normalized so as to satisfy Eq.~19!.
We now turn to the fluctuations ofW. For a spectrum

with ‘‘stationary,’’ i.e., energy-independent, statistical pro
erties, Ref.@15# finds, for the variance of a linear statistic lik
W,

var~W!5
1

DE2`

1`

uf~t!u2@12b~Dt!#dt. ~21!

Here,

f~t!5E
2`

1`

w~E!e22p iEtdE ~22!
us

-

andb(k) is the two-level form factor, defined as the Fourie
transform of the two-point cluster function@9#. We shall as-
sume that theEm’s form a spectrum with stationary statistic
properties and that these properties are not significantly
tered in the spectrum of theEi ’s: this is an approximation,
partially verified in Ref.@16#, whose relaxation would re
quire further analysis. In particular, for a Gaussian ortho
nal ensemble~GOE! @9#, b(k) is given by

b~k!5H 122uku1uku ln~112uku!, uku<1

211uku lnF2uku11

2uku21G , uku>1.
~23!

If we adopt, forw(E), the Lorentzian model~20!, then

f~t!5De2pGutu. ~24!

If G/D@1, we may approximateb(k) in Eq. ~21! for small
values of the argument ('122uku), so that

var~W!'2E
2`

1`

uf~t!u2utudt5S D

pG D 2. ~25!

On the other hand, squaring the expression

W512(
i

dwi ~26!

@see Eqs.~15! and~16!# and ensemble averaging, we obta
for the variance ofW,

var~W!5(
i , j

^dwidwj&. ~27!

Comparing with Eq.~25! we thus find the requirement

(
i , j

^dwidwj&5S D

pG D 2, ~28!

that the fluctuating quantitiesdwi must fulfill.

III. THE RELAXATION OF THE MODEL STATE

Suppose that att50 we prepare the system described
the preceding section in the model stateul&. As a function of
time, the system will be found in the state

uc~ t !&5(
i

u i &^ i ul&e2 iEi t ~29!

~we use units in which\[1).
Thesurvival probability amplitudefor finding the system,

at time t, in the original stateul& is

a~ t ![^luc~ t !&5(
i
wie

2 iEi t, ~30!

which is thus expressed in terms of the strength function
the preceding section, Eq.~9!. For an ensemble of spectra, a
we considered in the preceding section,a(t) is a random
quantity; its ensemble average is given by
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55 6373ENERGY-LEVEL STATISTICS AND TIME RELAXATION . . .
^a~ t !&5(
i

^@w~Ei !1dwi #e
2 iEi t&5(

i
^w~Ei !e

2 iEi t&

5NE w~E1!e
2 iE1tp~E1!dE15NE

L
w~E!e2 iEt

dE

L

→
1

DE w~E!e2 iEtdE, ~31!

in the same limit as in the preceding section, right below
~18!. If we modelw(E) as in Eq.~20!, choosingEl50, we
find, for the ensemble-averaged survival probability amp
tude, the exponential decay law

^a~ t !&5e2Gt/2. ~32!

We now turn to the main topic of the present paper:
study of thesurvival probability

P~ t !5ua~ t !u2, ~33!

which, from Eqs.~30! and ~14!, can be written as

P~ t !5(
i , j

wiwje
i ~Ej2Ei !t

5(
i , j

@w~Ei !1dwi #@w~Ej !1dwj #e
i ~Ej2Ei !t. ~34!

Of course, the full statistical distribution of the random qua
tity P(t) for fixed t is of interest; here we shall confin
ourselves to the calculation of its first moment. From E
~34! we can write

^P~ t !&5^P~ t !&~0!1Q~ t !, ~35!

where

^P~ t !&~0!5^uâ~ t !u2&, ~36!

with

â~ t !5(
i
w~Ei !e

2 iEi t[(
i
wt~Ei !, ~37!

and

Q~ t !5(
i , j

^@w~Ei !~dwj !1~dwi !w~Ej !#e
i ~Ej2Ei !t&

1(
i , j

^~dwi !~dwj !
i ~Ej2Ei !t&. ~38!

The first term in Eq.~35!, i.e.,^P(t)& (0), can be calculated
if we realize that the quantityâ(t) is again a linear statistic
this we do below@Eq. ~41!#. We have not been able to evalu
ate the termQ(t); however, we show that this term is qui
small for not too larget and verify this statement numer
cally in cases whereG@D. For larget we also show that its
average over a long time interval is positive and verify t
statement numerically as well~see Sec. III A below!.
.

-

e

-

.

The analysis of Ref.@15#, which was already applied to
write Eq. ~21!, now leads to

^â~ t !â* ~ t !&2^â~ t !&^â* ~ t !&

5
1

DE2`

1`

uf t~t!u2@12b~Dt!#dt, ~39!

whereb(k) is again the two-level form factor and

f t~t!5E
2`

1`

wt~E!e22p iEtdE

5E
2`

1`

w~E!e22p iE~t1t/2p!dE, ~40!

which reduces tof(t) of Eq. ~22! when t50. Equations
~31!, ~36!, and~39! then yield

^P~ t !&~0!5uf t~0!u2/D21
1

DE2`

1`

uf t~t!u2@12b~Dt!#dt.

~41!

For the Lorentzian model~20! for w(E), we have

f t~t!5De2pGut1t/2pu. ~42!

Equation ~41! is the main result of this paper: it give
^P(t)& (0) as a quadrature of known functions. ForG@D,
^P(t)& (0) describesan exponential decay, which is then fo
lowed by a ‘‘revival,’’ governed by the two-level form facto.
Equation~41! can be approximated by

^P~ t !&~0!'^P~ t !&~1![e2Gt1
D

pGF12bS Dt

2p D G , ~43!

for G@D. We first apply Eq.~41! for t50. Using Eqs.~19!,
~21!, ~25!, and~40!, we find

^P~0!&~0!511S D

pG D 2, ~44!

if G@D. ForQ(0), Eq. ~38! gives

Q~0!52K F(
i
w~Ei !GF(

j
dwj G L 1(

i , j
^~dwi !~dwj !&

52K S 12(
i

dwi D F(
j

dwj G L
1(

i , j
^~dwi !~dwj !&

52(
i , j

^~dwi !~dwj !&52S D

pG D 2. ~45!

Here we used Eq.~28!. Results~44! and~45! add up to 1, as
they should. IfG@D, Eq. ~45! shows thatQ(0) is second
order in the small quantityD/pG; we thus expect, for not too
large times,̂ P(t)& (0) to dominate overQ(t).
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Consider now the average of^P(t)& over an infinite time
interval, that we denote with a bar. From Eq.~35! we find

^P~ t !&5^P~ t !&~0!1Q~ t !. ~46!

Using Eqs.~36! and ~37!, we can express the first term as

^P~ t !&~0!5K (
i

@w~Ei !#
2L 5

1

DE @w~E!#2dE, ~47!

which, evaluated with the Lorentzian model~20!, gives

^P~ t !&~0!5
D

pG
, ~48!

which should then also be the asymptotic value
^P(t)& (0) for large times. This result has a very appeali
interpretation. The probability of finding the eigenstateu i & of
H in the vector stateuc(t)& is wi , independent of time@see
Eq. ~29!#; wi is concentrated in a region of widthG @Eq.
~20!#, where there are;n5G/D levels, so that̂ wi&;1/n
inside that region. From the standpoint of the eigensta
ul&, um& of H0, the probability is concentrated, att50, in the
model stateul& and in none of the statesum&; as t→`,
according to Eq.~48!, it is as if the probability had been
spread among;n neighboring levels.

We can estimate the second term in Eq.~46! by time
averaging Eq.~38! and approximatinĝw(Ei)(dwi)&'0, so
thatQ(t)'( i^(dwi)

2&. This indicates that the correction o
^P(t)& (0) provided byQ(t) is positive. This correction can
be further estimated as follows. Callxi5^lu i &, so that
wi5xi

2 . As in the above paragraph, we recall that the ene
span over whichwi is appreciable is;G and contains
;n5G/D levels. Suppose that thexi are Gaussian variable
with zero centroid and the same varianceV. Then
^xi

2&5^wi&5V and ^xi
4&5^wi

2&53V2, so that var(wi)5
^wi

2&2^wi&
252V2. From Eq. ~10!, V51/n, so that

Q(t);n var(wi);1/n;D/G. This estimate indicates tha
for large timesQ(t) is no longer negligible compared wit
^P(t)& (0) and that the two quantities could be of the sa
order of magnitude.

A. Numerical simulations

We present a scheme that is useful for the numerical
culation of the survival probabilityP(t) of Eq. ~33!. We can
expand the wave function of the system at timet @Eq. ~29!#
in terms of the model stateul& and the basisum& as

uc~ t !&5a~ t !ul&1(
m

am~ t !um&. ~49!

The coefficientsa(t) andam(t) satisfy the set of ordinary
differential equations

da~ t !

dt
52 iEla~ t !2 i(

m
vlmam~ t !, ~50a!
f

s

y

e

l-

dam~ t !

dt
52 iEmam~ t !2 ivlm* a~ t !. ~50b!

Using Eqs.~50! we find the set of (N11)2 ordinary differ-
ential equations

dP~ t !

dt
52 (

m51

N

Fm~ t !, ~51a!

dPm~ t !

dt
5Fm , ~51b!

dFm~ t !

dt
52~El2Em!Im~ t !12uvlmu2P~ t !2 (

n51

N

Imn~ t !,

~51c!

dIm~ t !

dt
5~El2Em!Fm~ t !2 (

n51

N

Fmn~ t !, ~51d!

dFmn~ t !

dt
5~En2Em!Imn~ t !2uvlmu2I n~ t !1uvlnu2Im~ t !,

~51e!

dImn~ t !

dt
52~En2Em!Fmn~ t !1uvlmu2Fn~ t !1uvlnu2Fm ,

~51f!

from which we can find the time evolution ofP(t). In Eqs.
~51! we have defined

Pm~ t ![uam~ t !u2, ~52a!

Fm~ t ![ i @vlma* ~ t !am~ t !2vlm* am* ~ t !a~ t !#, ~52b!

Im~ t ![vlma* ~ t !am~ t !1vlm* am* ~ t !a~ t !, ~52c!

Fmn~ t ![ i @vlm* vlnam* ~ t !an~ t !2vlmvln* an* ~ t !am#,
~52d!

Imn~ t ![vlm* vlnam* ~ t !an~ t !1vlmvln* an* ~ t !am~ t !,
~52e!

with m, n51, . . . ,N. The system of equations~51! is for-
mally equivalent to the one obtained in Ref.@6# and the
magnitudes defined by Eqs.~52! can be thought of as a par
ticular case of the ‘‘relevant’’ operators introduced also
that reference. A number of numerical simulations were p
formed, in order to verify the approximations under whi
the above analytical results were obtained. For theEm’s an
unfolded ~i.e., with uniform density! GOE spectrum with
N5800 levels centered atEl was used. The coupling matri
element, in units of the mean spacingD, was chosen as
v/D52.08, giving, for the width of the strength function, i
the same units,G/D52pv2/D2527.27. The results of the
computer simulations are given in Figure 1, which sho
P(t) averaged over an ensemble of 100 members; the e
bars indicate the fluctuations arising from the finite size
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55 6375ENERGY-LEVEL STATISTICS AND TIME RELAXATION . . .
the ensemble. The dash-dotted line is a plot of the theore
expression̂ P(t)& (1), Eq. ~43!; no significant difference was
found with ^P(t)& (0), obtained carrying out numerically th
integration indicated in Eq.~41!. In the abscissa, the time i
indicated in units of the ‘‘Heisenberg time’’ 1/D. We ob-
serve that, up to timest;2.4/D;65/G ~see inset!,
^P(t)& (1) gives a good quantitative description of the da
The reason for the difference, or discrepancy, in the vicin
of the minimum is not very clear; numerically we have n
found a clear indication of saturation in this difference w
the number of levels, which was increased up toN5800.
There is some evidence@17# that such a discrepancy migh
be connected with the difference in statistical properties
tween the spectrum of theEi ’s and that of theEm’s; if this is
the case, using, in Eq.~43!, theb(Dt/2p) appropriate for the
levelsEm should improve the agreement. Also, should th
be any evidence for a deviation with respect to the Loren
ian model of the strength function, we could modify th
f t(t) of Eq. ~42! accordingly. For larger times the numeric
results are larger than the analytical ones, in agreement

FIG. 1. The time evolution of the average survival probabil
obtained from a numerical simulation is represented as the s
line: an unfolded GOE spectrum with 800 levels centered atEl was
used, withv/D52.08 andG/D527.27; an ensemble of 100 ele
ments was constructed. The dash-dotted line represents the res
the analytical studŷ P(t)& (1). The inset shows the evolution fo
shorter times, where the error bars due to the finite sample size
included.
-

al

.
y
t

e-

e
-

ith

the discussion given above. The qualitative trend, i.e.,
exponential decay followed by a nonzero asymptotic val
is similar to the one found in Ref.@12#; this asymptotic be-
havior is similar to that indicated in Ref.@11# and to the
‘‘echo’’ observed in Ref.@7#.

IV. SUMMARY

In this paper we consider a quantum-mechanical syst
prepared, att50, in a model state, that subsequently deca
into a sea of other states whose energy levels form a disc
spectrum with an average level spacingD. The main purpose
of the paper is to analyze the influence of the discreten
and statistical properties of the spectrum in the time dep
dence of the survival probabilityP(t). The ensemble averag
^P(t)& of the survival probability is given in Eq.~35!. The
first term,^P(t)& (0), is calculated explicitly in Eq.~41!, un-
der the assumption that the stationary~i.e., energy-
independent! statistical properties of the original spectru
are not significantly altered in the perturbed spectrum.
G@D, ^P(t)& (0) of Eq. ~41! does not differ significantly
from its approximation^P(t)& (1) of Eq. ~43!. Its general
trend, forG@D, is an exponential decaye2Gt, followed by a
revival, governed by the two-point structure function. W
have not been able to evaluate the second term,Q(t); how-
ever, for not too large times we found it to be quadratic
the small quantityD/G, so that ^P(t)& (1) alone describes
well ~except, to a certain extent, for the vicinity of the min
mum, as discussed above! the results of computer simula
tions up to times on the order of 2.4 times the Heisenb
time 1/D, or ;65 decay times 1/G.
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