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We study a quantum-mechanical system, preparets 8t in a model state, that subsequently decays into
a sea of other states whose energy levels form a discrete spectrum with given statistical properties. An
important quantity is theurvival probability Rt), defined as the probability, at tinteto find the system in
the original model state. Our main purpose is to analyze the influence of the discreteness and statistical
properties of the spectrum on the behavior{t). SinceP(t) itself is a statistical quantity, we restrict our
attention to its ensemble average(t)), which is calculated analytically using random-matrix techniques,
within certain approximations discussed in the text. We find{Rt)), an exponential decay, followed by a
revival, governed by the two-point structure function of the statistical spectrum, thus giving a nonzero
asymptotic value for larg€s. The analytic result compares well with a number of computer simulations, over
a time range discussed in the tep$1063-651X97)03603-9

PACS numbg(s): 05.40:+j, 05.70.Ln, 72.15.Lh

I. INTRODUCTION physics is the decay, via the Coulomb interaction, of a state
of good isospin embedded in a sea of states of a different
The problem of finding the time relaxation of a quantum-isospin[5], and the related spreading width.
mechanical system after it has been prepared in some model In the case of a bound system, the spectrum the model
state is of great interest in many fields of physics. Perhapstate decays into is discrete; in the approaches indicated
one of the oldest examples goes back to the analysis bgbove, the influence, in the relaxation process, of the dis-
Weisskopf and Wignefl] of a decaying state. The main creteness of the spectrum or its statistical properties was not
features of the derivation can be obtained in the followingcontemplated. In contrast, R6] and some of the refer-
schematic model. The stata) is coupled att=0 to an ences cited there consider the relaxation of a harmonic oscil-
infinite discrete spectrum of equally spaced levigls, A lator coupled to a bath oN harmonic oscillators with
being the level spacing, via the matrix elementsequally spaced frequencied (being the spacing without
v,=(ilv|n), assumed to be independentrofv,,=v. Then, taking the continuum limit. In th&— o limit an exponential
taking the continuum limiA—0 (Jn)—|E)), subject to the decay is found, with a revival at,~2=7/A and multiples
condition 2rv?/A=T (wherel is a constant), theurvival  thereof. Referencfr] discusses the dynamics of an electron
probability, i.e., the probability of finding the system in state inside a chaotic quantum défor a review of quantum dots
[\) at timet, is found to have the familiar exponential be- see Ref[8]): the analysis considers the time evolution of the
havior P(t)=e~ " (in units in which#=1). probability to find the particle at a poim, if it was located
The above schematic model can be taken as the paradigair, att=0. Using supersymmetry methods, it is found that
for a number of physical applications. Consider, for instanceguantum interference, the discreteness of the energy spec-
the quasiparticle concept in many-body the¢®). In this  trum, and the corresponding level statistics lead to a non-
case, the model staja) can be taken to represent a single- trivial time-dependent behavior governed by the Fourier
particle state, which is coupled to the remaining states via théransform of the two-level correlation functid®,10] (see
two-body interaction. For a bound system, the resultingglso Refs.[11,12). A similar statement is made, without
width is sometimes known as the “spreading width.” Actu- proof, in Ref.[13]: there, a wave packet is constructed at
ally, various Green function techniques have been developeid=0 as a linear combination di states—contained in a
to treat this problenf2]. Still in the framework of many- stretch of energysE, the mean spacing beind—obeying
body theory, one can put in the above language the importarne of the random-matrix statisti8,10]; it is stated that the
problem of describing the resonances generated by the decapsemble-averaged survival probability is governed by the
of “bound states embedded in the continuum” via the two-Fourier transform of the two-level correlation function, in
body interaction 3]. Actually, the general problem of reso- agreement with Ref.7].
nance decay in scattering theory and the deviations from the The purpose of the present paper is to analyze the influ-
pure exponential decay have been of interest to several a@nce of the discreteness and statistical properties of the spec-
thors over the years: see, e.g., Ref], and the references trum in the survival probability?(t) of a model state. The
cited therein. Another problem that fits the above schemeanalysis is performed in a language entirely similar to that
and was of interest a few decades ago in the realm of nucleatescribed at the beginning of this Introduction in connection
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with the Weisskopf-Wigner model, but using a random-whose solutions are the eigenvalugsand the eigenvector
matrix spectrum instead of an equally spaced one and with:omponentszﬂ). We find, forc,,,
out ever taking the continuum limit. The ensemble average

(P(t)) is calculated using random-matrix techniques: al- LN

though the calculation is performed within certain approxi- C“:E—E ' @)
mations to be defined below, we found the simplicity of the #

derivation appealing. which can thus be eliminated from E8) to give, forE, the

In the next section we define the model and solve thalispersionlike relation
corresponding time-independent Sdfirger equation. The
survival probability and its ensemble average are calculated 2 [onu —E._E )
in Sec. lll, where a comparison with numerical simulations is z E,—E Mo
also presented.

| 2

A plot of the two sides of Eq8) as a function oE gives the
Il. THE MODEL. THE TIME-INDEPENDENT SOLUTION solutionsE; as the abscissas of the intersections. We can see
. . _ that there is a solution between every two succesEiys,
In the Introduction we described a number of physicaland one smaller and one larger than all fhgs. The solu-
systems in which the relaxation of a model statg into a  tions E; approachE,, as we go ever farther away frof .
“sea” of levels |u) via a residual interaction is of great  The “strength function,” i.e., the probability of finding

interest. In this section we propose a model for this problemhe model staté\ ) in the exact eigenstaté), is given, from
and analyze the solution of the corresponding time-Eqgs.(5) and(7), by
independent Schdinger equation. The time-dependent

solution—the topic of main interest in this paper—will be TN 1
studied in the next section. wi=[\]i)*= : 9
The stateg\) and|u) are assumed to be solutions of an 1+z [V, /(Ei— EM)]2
o

unperturbed Hamiltoniakly,
We shall see in the next sectidsee Eq.(30)] that the

(Ex—Ho)[\)=0, strength function plays an important role in the calculation of
_ the time-dependent survival probability; we thus devote the
(E,—Ho)|u)=0, (1) rest of this section to studying some of its properties.
. . . i th teh) i lized, thew;’ th
E\ being embedded in the sea of levEls. The total Hamil- ru|§|nce € stateh) is normalized, thew;'s obey the sum
tonian is
H=Hgy+v, ) > wi=1. (10)

i
where the residual interactian only couples the statp\)

with the stategu); i.e., its only nonzero matrix elements are Far away fromE, , whereE;~E,, Eq. (8) allows writing

W; as
(Noluy=vy, . @3 o
. . i (E _E')21 (11)
Some of the properties of the solutions of the complete A
Schralinger equation in agreement with perturbation theory.
(E,—H)|i)=0 4) It is interesting that for a “picket-fence(PF) model, in
: which the E,’s are equally spaced—their distance being

. . . . 2_ 2
can be obtained in an elementary way, as discussed in Rei‘é._an?1 ;nﬁm;e in nubml;}er, gnd a”I th@w| =v°, the
[5,14] and briefly indicated in what follows. Expanding the strength function can be found exactly as

eigenstate$i ) in terms of|\) and|u) as 2
PF

0 W E—E (T2 12
N+ ) _ _ _
liy= Iz 5) i.e., aLorentzianof width
+ C 2 2 2 A 211/2
Vi %'“' r= ZU 1+(—) : (13
av

we can write Eq(4) as the system of coupled equations \yhich in turn goes over, in the continuum limit, to the result

mentioned in the Introduction.
E + > vxuC,=E, In the model with which are we concerned, the energy
© levelsE,, are assumed to obey some statistical distribution
with constant average spacidgand to be infinite in num-
vutE.c,=Ec,, (6) ber; we suppose, for simplicity, that all tlhew|2=v2. The
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strength functiorw; will then depend not only oE;, as for andb(k) is thetwo-level form factordefined as the Fourier
the PF, Eq.(12), but also on all the otheE;’s. This last transform of the two-point cluster functid®]. We shall as-
dependence is negligible far frol), , as Eq(11) shows, but sume that th& ,’s form a spectrum with stationary statistical
this may not be the case in other regions. We represeas  properties and that these properties are not significantly al-
tered in the spectrum of thg;’s: this is an approximation,
wi=W(E;) + dw;. (14 partially verified in Ref.[16], whose relaxation would re-

. . . . quire further analysis. In particular, for a Gaussian orthogo-
Here, w(E;) is a continuous function of its argument that nal ensembléGOB) [9], b(K) is given by

represents, for fixee;, an average over all the other levels;
ow; represents the fluctuations around that average and thus 1-2|k|+|k|In(1+2]K]), |k|=1
averages to zero for fixe; (its full ensemble average thus

vanishes too{éw;)=0). The sum rulg10) reads b(k)= _1+|k|ln[§::§:—+i . |k=1. @3
Z W(Ei)+2i ow;=1. (15  If we adopt, forw(E), the Lorentzian mode(20), then
d(r)=Ae 7, (24)

The first term, i.e.,
If '/A>1, we may approximatb(k) in Eq. (22) for small

W=, w(E)), (16)  values of the argument{1—2|k|), so that
1
+o0 A 2
is a statistical quantity, because tig’s fluctuate from var(W)wZJ' |¢(T)|2|T|dT=(_F> . (25
sample to sample: it is actually a linear statistic, in the lan- - m

guage of Dyson and Mehfd5]. ThusW fluctuates around
(W)=1 (17)

[the magnitude of the fluctuations will be found below, in
Eq. (25)]; but W, added to the second term in EEL5),
always gives 1. Since thE;'s occur symmetrically in the [see Eqs(15) and(16)] and ensemble averaging, we obtain,
distribution function, the probability densitp(E;) for a  for the variance oWV,

single eigenvalue is identical for alls. For N levels in an

On the other hand, squaring the expression

W=1-2 éw, (26)

interval L, p(E;)=1/L and Eq.(17) gives var(W>=iEj (6w, ow;). 27)
E ,
1=N(W(Eq))= NJLW(E)T' (18) Comparing with Eq(25) we thus find the requirement
Letting N, L—ce, with L/IN=A, we find A\
etting 0, Wi we fin 2 <5\Ni&N1>=<—F> , 29
1 Y i
A f W(E)dE=1. 19 {hat the fluctuating quantitiew; must fulfil.
Inspired by the behavior ¥, far from E, [see Eq(11)] IIl. THE RELAXATION OF THE MODEL STATE
and the result for the PF Eq12), we propose, a simple
model forw(E;), the Lorentzian Suppose that at=0 we prepare the system described in
the preceding section in the model stt¢. As a function of
rA2w time, the system will be found in the state
W(E) = =—F-2 2 (20)
(Ei—E)+(I'12)
— 1 1 —iEit
that has been normalized so as to satisfy @§). W(t))_Ei liXiIn)e (29)

We now turn to the fluctuations dN. For a spectrum
with “stationary,” i.e., energy-independent, statistical prop- (we use units in whicth=1).
erties, Ref[15] finds, for the variance of a linear statistic like ~ The survival probability amplitudéor finding the system,
W, at timet, in the original statg\) is

+ oo

1 .
var(W)=K |¢(T)|2[1—b(AT)]dT (21) a(t)E<)\|¢(t)>:z Wie*'Eit’ (30)

— o0

Here, which is thus expressed in terms of the strength function of
the preceding section, E). For an ensemble of spectra, as
“+ o . . . . .
¢(T)=f W(E)e~2"ETdE (220 Wwe considered in the preceding sectiar(t) is a random
w quantity; its ensemble average is given by
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N N The analysis of Ref[15], which was already applied to
(a(t)FZ ([W(Ej)+ dw;]e 'Eit>:2i (W(E)e &) write Eq. (21), now leads to

:NJW(El)e‘El‘p(El)dE1=wa(E)e‘Etci—E (a(t)a* (1) —(a(t)(a* (1))
L 1 (e
1 = Kﬁx |p( 1) [1—-b(A7)]d7, (39
_’Kf w(E)e E'dE, (31)
whereb(k) is again the two-level form factor and

in the same limit as in the preceding section, right below Eq.

(18). If we modelw(E) as in EqQ.(20), choosingE, =0, we b 7) = JH\N (E)e2mETgE
find, for the ensemble-averaged survival probability ampli- ! e

tude, the exponential decay law

+ o0
= —27iE(7+t/27)
(a(t)y=e" 112, (32) fﬁw w(E)e dE, (40)
We now turn to the mair_1_topic of the present paper: thgyhich reduces top() of Eq. (22) whent=0. Equations
study of thesurvival probability (31). (36), and (39) then yield
P(t)=]a(t)]?, (33

1 [+
(P(0))©=[(0)[?/A%+ Zf_w | ()7 1—Db(A7)]dT.

which, from Egs.(30) and (14), can be written as 1)

P(t)=2, ww;e/Ei~Et For the Lorentzian moddR0) for w(E), we have
]

, ¢I(T):Ae—wr\7+t/2w|_ (42)
= [W(E;)+ ow;][W(E))+ ow;]e!Ei~Et, (34)
L Equation (41) is the main result of this paper: it gives
P(1))® as a quadrature of known functions. FBeA,
(P(1))(® describesan exponential decay, which is then fol-
lowed by a “revival,” governed by the two-level form factor
Equation(41) can be approximated by

Of course, the full statistical distribution of the random quan-
tity P(t) for fixed t is of interest; here we shall confine
ourselves to the calculation of its first moment. From Eq.
(34) we can write

(P()=(P(1))V+Q(1), (35) (P(1))O=~(P(t))V=e Tt :—F{l—b(ﬁ—m, (43
where
for I's>A. We first apply Eq(41) for t=0. Using Egs(19),
<p(t)>(0):<|&(t)|2>, (36) (21), (25), and(40), we find
. 2
with (P(0)O=1+ WA_r) : (44)
a(t)=2 w(Epe "'=2 w(E), @7 it r>A. ForQ(0), Eq.(38) gives
and
Q(0>=2<[2i w(EnH; ow, >+EJ (8w (ow;))

Q(t)=i2j ([W(E;)(8w)) + (dw;)w(E;)]eEi~EY)

w23 o3

+ 25 ((owy) (dwy) EImEY, (39)
" + 25 {(ow)(owy))
The first term in Eq(35), i.e.,(P(1))(©, can be calculated )
if we realize that the quantitgt(t) is again a linear statistic: — _2 (W) (w)))=— (i) ) (45)
this we do belowWEq. (41)]. We have not been able to evalu- N ! ! ol
ate the termQ(t); however, we show that this term is quite
small for not too larget and verify this statement numeri- Here we used Eq28). Results(44) and(45) add up to 1, as
cally in cases wherE>A. For larget we also show that its they should. IfI'>A, Eq. (45 shows thatQ(0) is second
average over a long time interval is positive and verify thisorder in the small quantith/«I"; we thus expect, for not too
statement numerically as wedliee Sec. Il A below large times{P(t))(® to dominate oveRQ(t).
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Consider now the average OP(t)) over an infinite time da, (1) _ _
interval, that we denote with a bar. From HEg§5) we find T —iE a,(t)—ivy a(t). (50b)
(P())=(P(1))YO+Q(t). (46) Using Egs.(50) we find the set of i+ 1)? ordinary differ-
ential equations
Using Eqgs.(36) and (37), we can express the first term as dp(t) N
t
. g =~ 2, Ful, (51
JE— m=
<P(t>><°>=<2i [w(Ei)]2> = Kf [W(E)J°dE, (47)
dP,(t) (510
which, evaluated with the Lorentzian modg0), gives dt ®
A dF,(1) , .
(POYI=—, (48) G =~ B EDLO+2uy, PP - X (),
(510
which should then also be the asymptotic value of \
(P(1))©® for large times. This result has a very appealing di(t)
interpretation. The probability of finding the eigensthjeof dt =(BEx—E)F L)~ Vzl Fun1), (51d
H in the vector statéy(t)) is w;, independent of timsee
Eqg. (29)]; w; is concentrated in a region of width [Eqg. dF, (1)
(20)], where there are-n=T"/A levels, so tha{w;)~1/n bl AN

— 2 2

inside that region. From the standpoint of the eigenstates dt (B B L = fon 0+ oA,
IN), |m) of Hg, the probability is concentrated, tat 0, in the (519
model state|]\) and in none of the statglg.); ast—ce, o
according to Eq.498), it is as if the probability had been urll)
spread among-n neighboring levels. a (B~ E)Fun(O+[or,u o) +oy°F .,

We can estimate the second term in E46) by time (519
averaging Eq(38) and approximatingw(E;)(éw;))~0, so . ] ] .
that@wi&(éwi)z). This indicates that the correction on fom which we can find the time evolution &(t). In Egs.
(P(1))©@ provided byQ(t) is positive. This correction can (51) we have defined
be further estimated as follows. Cak,=(\|i), so that

— 2

W, =xi2. As in the above paragraph, we recall that the energy Pu(t)=[a, [ (529
span over whichw; is appreciable is~I" and contains )
~n=T"/A levels. Suppose that the are Gaussian variables Fu()=i[v\,a* (Da,t)—vi,a,(Da®)], (520
with zero centroid and the same variandé Then
(x3=(w;)=V and (x")=(w?)=3V?, so that vany;)= l(D=v),a* (D, ) +v},ak(at), (520
(W?)—(w;)?=2V2. From Eq. (10, V=1/n, so that
Q(t)~n var(w;)~1n~A/T". This estimate indicates that JT,W(I)Ei[vfﬂvxvaZ(t)av(t)—Uwviyaj(t)%],
for large timesQ(t) is no longer negligible compared with (520
(P(1))©® and that the two quantities could be of the same
order of magnitude. L(D=0%, 00,5 (D, () +v, 0%,k (D a,(b),

(52¢

A. Numerical simulations . ) )
, , with w, v=1,... N. The system of equation$l) is for-
We present a scheme that is useful for the numerical Ca'r‘nally equivalent to the one obtained in R6] and the
culation of the survival .probabilitP(t) of Eq. (33). We can magnitudes defined by Eg2) can be thought of as a par-
expand the wave function of the system at titfEq. (29)]  tjcular case of the “relevant” operators introduced also in

in terms of the model state.) and the basi$u) as that reference. A number of numerical simulations were per-
formed, in order to verify the approximations under which
_ the above analytical results were obtained. ForEhés an
= + . : . ; i )
()= a(O]r) % aﬂ(t)|ﬂ> (49 unfolded (i.e., with uniform density GOE spectrum with

N=800 levels centered &, was used. The coupling matrix
The coefficientsa(t) and «,(t) satisfy the set of ordinary €lement, in units of the mean spacidg was chosen as
differential equations v/A=2.08, giving, for the width of the strength function, in
the same units|'/A=27v2/A2=27.27. The results of the
computer simulations are given in Figure 1, which shows
—iExa(t)—iE vy a,(t), (508 P(t) ave_raged over an ensembl_e _of 100 memb_er_s; th_e error
o TR bars indicate the fluctuations arising from the finite size of

da(t) 3
dt
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FIG. 1. The time evolution of the average survival probability
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the discussion given above. The qualitative trend, i.e., an
exponential decay followed by a nonzero asymptotic value,
is similar to the one found in Ref12]; this asymptotic be-
havior is similar to that indicated in Refl1l] and to the
“echo” observed in Ref[7].

IV. SUMMARY

In this paper we consider a quantum-mechanical system,
prepared, at=0, in a model state, that subsequently decays
into a sea of other states whose energy levels form a discrete
spectrum with an average level spacifigThe main purpose
of the paper is to analyze the influence of the discreteness
and statistical properties of the spectrum in the time depen-
dence of the survival probability(t). The ensemble average
(P(t)) of the survival probability is given in Eq35). The

obtained from a numerical simulation is represented as the soligst term,(P(t))(O), is calculated explicitly in Eq(41), un-

line: an unfolded GOE spectrum with 800 levels centerefl,avas

der the assumption that the stationafye., energy-

used, withv/A=2.08 andl'/A=27.27; an ensemble of 100 ele- jhdependent statistical properties of the original spectrum
ments was constructed. The dash-dotted line represents the resultafe not significantly altered in the perturbed spectrum. For

the analytical studyP(t))®. The inset shows the evolution for

shorter times, where the error bars due to the finite sample size we

included.

the ensemble. The dash-dotted line is a plot of the theoretic
expression P(t))(l), Eqg. (43); no significant difference was
found with (P(t))(®), obtained carrying out numerically the
integration indicated in Eq41). In the abscissa, the time is
indicated in units of the “Heisenberg time” A/ We ob-
serve that, up to timest~2.4/A~651" (see inseét
(P(1))® gives a good quantitative description of the data

found a clear indication of saturation in this difference with
the number of levels, which was increased upNe 800.
There is some evidendd 7] that such a discrepancy might

I's>A, (P(1))© of Eq. (41) does not differ significantly
from its approximation(P(t)}¥ of Eq. (43). Its general
trend, forl'>A, is an exponential decay ', followed by a
?vival, governed by the two-point structure function. We
ave not been able to evaluate the second t€¥(b); how-
ever, for not too large times we found it to be quadratic in
the small quantityA/T, so that(P(t))*) alone describes
well (except, to a certain extent, for the vicinity of the mini-
mum, as discussed abgvthe results of computer simula-
tions up to times on the order of 2.4 times the Heisenberg

The reason for the difference, or discrepancy, in the vicinitytlme 1A, or ~65 decay times 1.

of the minimum is not very clear; numerically we have not
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