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We have constructed prototype models of globally coupled systems on lattices with space-time hierarchy. In
our models fully chaotic dynamical elements at a certain level in the hierarchy are coupled to the levels
immediately above and below in the hierarchy through their mean fields. We report the wealth of spatiotem-
poral phenomena our models yield and give detailed bifurcation diagrams in coupling parameter,e, space
(0<e<1). We find that over a large range of strong coupling (0.5,e<1) our models quickly evolve into a
spatiotemporal fixed point. We analyze the stability of this phase. For moderate coupling 0.15,e,0.5, we
have spatial inhomogeneity and temporal regularity, marked by the presence of, either exact 2k, k51,2 . . .
cycles, or noisy bands~characterized byd spikes on a noisy background in the power spectra!. An interesting
feature of this phase is the presence of several coexisting attractors, with fractal basin boundaries. For small
coupling (e;0.1) we show that our system, while temporally chaotic and spatially nonhomogeneous, develops
certain broad periodicities in their mean field, especially at finer scales. In addition, if one looks at the
fluctuation of the mean field at various levels in the hierarchy in this phase, one finds that the mean square
deviation does not decrease as 1/N with N, whereN is the number of elements at a particular level. Instead it
displays marked nonstatistical behavior with the deviations saturating~or even increasing! for high N.
@S1063-651X~98!09704-9#
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I. INTRODUCTION

Global coupling in dynamical systems yields a host
very novel features. This class of systems is of considera
interest in modeling phenomena as diverse as Josep
junction arrays, multimode lasers, vortex dynamics, and e
evolutionary dynamics, biological information processi
and neurodynamics. More generally global coupling appe
as a result of a mean field approach to the dynamics of
tributed systems. The ubiquity of globally coupled pheno
ena has thus made it a focus of sustained research ac
@1–10#.

Now a wide range of phenomena, from turbulence
earthquakes, involve ahierarchy of spatial and tempora
scales. Dynamics occurring on spatially hierarchical med
are encountered in many physical processes. For instan
has been a tenet of the classical view of forebrain organ
tion that perceptual processing is performed via hierarc
cally organized cortical components. This has important
plications for memorized data structures and has prac
application in large data storage and retrieval capacity@11#.
Another well established example is fractal reaction kinet
i.e., diffusion controlled reactions with geometrical co
straints, as found in heterogeneous kinetics. These ca
described by reactions on fractal domains, and find pract
applications in reactions in pores of membranes, exc
trapping in molecular aggregates, exciton fusion in comp
ite materials, and charge recombination in clouds and
571063-651X/98/57~5!/5217~13!/$15.00
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loids @12#. Furthermore, there are also physical situatio
where both the temporal and the spatial scales are hiera
cal. One important example of this is earthquake dynam
Earthquakes arise from processes in the lithosphere, w
are well characterized by hierarchical discreteness of st
ture and dynamical time scales@13#. Basically the litho-
sphere presents a hierarchy of volumes or blocks that m
relative to each other. The largest blocks are the tecto
plates (;104 km). They are divided into smaller blocks, lik
shields or mountains. After 15–20 divisions we come
grains of rock of mm scale~if not less!. The relative move-
ment of the various blocks result in seismic activity. The
movements occur on a hierarchy of time scales as well, ra
ing from ;1 to 10 min ~elastic shocks!, days to months
~foreshocks and aftershocks! to 100–500 years~movement
of plates!. Therefore geophysical processes are strongly n
linear processes well described by space-time hierarchy.

It is of relevance then to investigate global coupling e
bedded in a hierarchical space-time structure. The exten
studies on globally coupled maps@1–10#, so far, have invari-
ably been defined on regular underlying lattices.~The only
examples of attempts to put coupled maps on nonunifo
lattices have been maps withlocal diffusive coupling on spa-
tially hierarchical lattices, such as Sierpı`nski gaskets@14#
and Cayley trees@15#.! Here we will incorporateglobal cou-
pling on a lattice that has a hierarchical structure in~i! space;
and in ~ii ! both space and time.

Thus, in our prototype model of hierarchical arrays
5217 © 1998 The American Physical Society
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5218 57SINHA, PÉREZ, AND CERDEIRA
globally coupled maps, we bring together two separate c
cepts:~1! Global coupling, which has successfully captur
the essence of a variety of complex spatiotemporal beha
with high connectivity, and~2! hierarchical lattices, which
arise as a natural description for phenomena occurring o
range of length and time scales. Our study, we then ho
will allow one to gain insight into a previously unexplore
range of spatiotemporal phenomena.

II. MODEL

As mentioned before, in contrast to the widely discuss
globally coupled maps, we now incorporate global coupl
on a hierarchical lattice. We consider two cases: mode
with hierarchical structure in space~relevant, for instance, in
neuronal activity! and model II, which is hierarchical in bot
space and time~relevant, for example, for geophysical pr
cesses such as earthquakes!. In our models, space is discret
time is discrete, and the state variable, which in phys
systems could denote macroscopic quantities such as en
temperature, pressure, fluid velocity or chemical concen
tion, is continuous. The elementary building block of o
hierarchical system is the logistic map, which has wid
spread relevance as a prototype of chaos:

xt5 f ~xt!512axt
2 , 21<x<1, 0<a<2. ~1!

Here t50,1,2, . . . denotes the discrete time,x is the dy-
namical variable, anda the control parameter. In our simu
lations we choosea52, which gives rise to fully chaotic
dynamics.

Now we embed this elementary nonlinear dynamical e
ment in a space-time hierarchical lattice. The state varia
then will have three indices: space, time, and hierarchy
bels. Time, as in the local map, is labeled byt. Space is
labeled byrPZd, which denotes points on ad-dimensional
cubic lattice. Hierarchy is indexed byn, 0<n<L. We asso-
ciate the largestn with the smallest~finest! scales. The scale
on level n, n50,1,2,. . . ,L are given by a typical length
scalel (n) and a typical time scaleq (n). For simplicity we
choose for model I, which has only spatial hierarchy:
e

n-

or

a
e,

d
g
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l
gy,
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-

-
le
-

l ~n!52l ~n11! . ~2!

Spatially, it implies that model I consists of a nested hier
chy of d-dimensional cubes. Level-n cubes contain 2d level-
(n11) cubes, i.e., level-n contains (2n)d sites.

For model II, which has both temporal and spatial hier
chical scales, we have

l ~n!52l ~n11!, q~n!52q~n11! . ~3!

Spatially, it again implies that this model consists of a nes
hierarchy ofd-dimensional cubes. In addition, temporall
this means that the value ofxt

n(r ) is updated only once when
xt

n11(r ) is updated twice.
The global coupling arises from the interaction of the

ements of a level with the mean fields of levels contiguous
the hierarchy. Incorporating this mean-field type interact
term in the dynamics, we obtain the complete dynami
equation forxt

n(r ) on leveln to be as follows:
For model I:

xt11
n ~r !5~12e! f „xt

n~r !…1 1
2 e~ht

n111ht
n21!, ~4!

where

ht
n215

1

~2n21!d S r xt
n21~r ! ~5!

and

ht
n115

1

~2n11!d S r xt
n11~r !. ~6!

This implies that the elements see an average of the m
field of the finer scale (n11) and the grosser scale (n
21). The boundary conditions are taken to be as follow
for level n5L, hn1150 and for leveln50, hn2150, for all
t. Also note that dimensionality simply has the effect
altering the number of elements at each level, since coup
is global. The geometry of theZd lattice is not important.

For model II:
xt11
n ~r !5H ~12e! f „xt

n~r !…1 1
2 e~ht

n111ht
n21!

xt
n~r !

if t[0~mod 2~L2n!!

otherwise. ~7!
ach

s

where

ht
n215

1

~2n21!d S r xt
n21~r ! ~8!

and

ht
n115

1

2 H 1

~2n11!d @S r xt
n11~r !1S r xt21

n11~r !#J . ~9!

This implies that the elements see an average of the m
field of two consecutive time steps of the finer scale,n11
an

~as it evolves twice as fast as leveln!, while seeing the same
mean field of the grosser scale,n21, for two evolutionary
steps~as it evolves half as slowly!. ~Again, we take for level
n5L, hn1150, and for leveln50, hn2150, for all t!.

Further, the above equation for model II means that e
time there is a change on leveln0 all levels n with n.n0
will be updated as well. Table I shows the pattern of timet
when the upper line of Eq.~7! applies. In a system withL
levels, updates on leveln are due at

t~n!~s!52L2ns, s50,1,2, . . . . ~10!
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57 5219HIERARCHICAL GLOBALLY COUPLED SYSTEMS
We call s the reduced time on leveln. Note that all time
series analysis will be with respect to the reduced times at
each level in the hierarchy, i.e., we will be stroboscopica
sampling the state variable at its natural time scale.

Note that in our study we update the levelsasynchro-
nously, in a certain fixed order, with the sites at each le
being updated in parallel~analogous, for instance, to the sit
ation in neuromorphology, where the neurons, neuron gro
and functional layers are fully asynchronous!. We start from
the spatially finest and dynamically fastest level:n5L, and
go on to the grossest~and slowest! level: L50. At each step
we use thecurrent values ofx( i ) to compute the effective
mean field@via Eqs.~5! and~6! for model I, and Eqs.~8! and
~9! for model II#. On the other hand, one can compute t
mean field synchronously~i.e., at the beginning of each tim
step! and then update sites at all levels simultaneously@16#.
See Appendix~A3! for further analysis on the dynamica
changes arising from differences in updating rules.

III. RESULTS

For both our models~I and II!, we start the numerica
simulations with values ofx0

n(r ) (n50,1,. . . ,L) chosen ran-

TABLE I. Times t at which the upper line of Eq.~7! applies for
a system withL53.

n\ t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1

0 x x
1 x x x x
2 x x x x x x x x
3 x x x x x x x x x x x x x x x x
l

ps

domly in the interval@21,1#. We record the evolution of the
state variablesxt

n(r ) and the mean fieldht
n at each leveln in

the hierarchy, for different values of the coupling parame
e. All results quoted in this paper, unless otherwise stat
are obtained using asynchronous level-by-level updates.

We now present, in the sections below, detailed bifur
tion diagrams and descriptions of the different dynami
phases the models yield.

A. Bifurcation diagrams

We first give the bifurcation diagrams of the two mode
with respect to the entire range of coupling strengthe :
0<e<1. Figures 1 and 2 give the dynamical phases
model I and model II, respectively. It is clearly evident th
for both models two distinct regions emerge:~1! 0.5,e
<1.0 where the system quickly evolves to a spatially sy
chronous and temporally invariant state for all initial cond
tions and~2! 0<e,0.5 where we have a variety of beha
iors. ~At e50.5 we have marginal stability, marked by ve
long transients!. Note that these bifurcation diagrams ha
been obtained using onlyonegeneric initial condition.

Figure 3 ~for model I! and Fig. 4~for model II! depict
bifurcation diagrams generated from a large set of rand
initial conditions. So, while Figs. 1 and 2 basically give th
stable attractors for a single typical initial phase point
different values ofe, Figs. 3 and 4 give the set of all coex
isting attractors to which initial phase points can evolve. F
the fixed point attractor all initial conditions are attracted
spatiotemporal invariance. So bifurcation diagrams gen
ated either way are identical. But for the second regi
which supports manycoexisting attractors, the two bifurca-
tion diagrams will necessarily be different, with Figs. 3 and
nge
one
FIG. 1. Bifurcation diagrams for model I, in one dimension~with L53!, displaying the various dynamical phases, over the entire ra
of coupling strength: 0<e<1. All four levels in the hierarchy (n50,1,2,3) are depicted. These bifurcation diagrams are generated from
generic initial condition.
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FIG. 2. Bifurcation diagrams for model II, in one dimension~with L53!, displaying the various dynamical phases, over the entire ra
of coupling strength: 0<e<1. All four levels in the hierarchy (n50,1,2,3) are depicted. These bifurcation diagrams are generated from
generic initial condition.
n
fo

is

ore,
ach
of
now giving the iterates of many superposed attractors.
Also, note that dimensionality does not play an importa

role in this system; i.e., the bifurcation diagrams obtained
one and two dimensions are essentially the same. Th
t
r
is

quite expected, as dimensionality, as mentioned bef
merely changes the sizes of the clusters of maps driving e
other through their mean fields, in our hierarchical array
map ensembles.
nge
om a
FIG. 3. Bifurcation diagrams for model I, in one dimension~with L53!, displaying the various dynamical phases, over the entire ra
of coupling strength: 0<e<1. All four levels in the hierarchy (n50,1,2,3) are depicted. These bifurcation diagrams are generated fr
sample of 25 random initial phase points.
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FIG. 4. Bifurcation diagrams for model II, in one dimension~with L53!, displaying the various dynamical phases, over the entire ra
of coupling strength: 0<e<1. All four levels in the hierarchy (n50,1,2,3) are depicted. These bifurcation diagrams are generated fr
sample of 25 random initial phase points.
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We now give details of the dynamical phases below.

B. Strong coupling phase„0.5<e<1.0…

For both models I and II, whene is reasonably high
(0.5,e<1.0) we find that the system goes to a spatia
homogeneous state~at each level in the hierarchy!, that is, it
is synchronous at all levels. Furthermore, temporally the s
tem dynamics goes to afixed point. We give some features o
the spectrum of steady state values below:

First, note that~a! xfixed
n for model I is identical to that for

model II, and~b! dimensionality does not affect the values
xfixed

n , as long asL remains the same~see Appendix for
analysis!. Figure 5 shows the steady state values of the v
ous levels of the hierarchy,xfixed

n versus level indexn ~n
50,1, . . .L, L57! for 4 values ofe: e50.9,0.8,0.7,0.6. It is
evident that there is a symmetry in the fixed point values
xn with respect to hierarchy leveln, namely,xfixed

n 5xfixed
L2n .

This is a result of the symmetry in the boundary conditio
namely,hn2150 for n50, andhn1150 for n5L, which
makes the form of the evolution equations@Eq. ~4! for model
I and Eq.~7! for model II# equivalent for the extrema levels
n50 andL. Further, it is clear that the fixed point values a
bounded between 0 and 0.5 for all values ofe. In the limiting
case ofe51.0 the entire system evolves toxt

n50 for all t
andn ~see Appendix!.

The above scenario is very different from that encou
tered earlier in globally coupled maps on regular lattices
the previous models one obtained synchronous states~that
were spatially homogeneous! but evolving chaotically in
time. Here we obtain synchronous states at each level o
hierarchy where every element becomestemporally invari-
ant as well. Now the problem of ‘‘controlling’’ extended
s-

i-

f

,

-
n

he

chaotic systems, which is currently evoking considerable
terest@17#, is essentially a search for systems~algorithms!
that yield stable synchronized states. So our models ab
have immediate relevance to this problem as it enables
stabilization of large systems, not only spatially~as in previ-
ous examples! but also temporally. So the emergence of sy
chronized fixed point dynamics from the space-time hier
chical global coupling of chaotic elements may ha
practical utility in the control of macroscopically cascad
dynamical systems.

C. Moderate coupling phase„0.15<e<0.5…

For both models~I and II!, the region of moderate cou
pling in parameter space, 0.15&e,0.5, is marked by spatia
inhomogeneity and temporal regularity.~Thee50.5 is a bor-
derline system, i.e., the stability of the fixed point state
marginal here, and so its approach to steady state value
characterized by very long transience.!

Figure 6 displays a representative example for mode
~in one dimension! with L53, in the range 0.2<e<0.3.
~The diagram again shows the attractor obtained from
evolution of a single phase point.! Here the system is asyn
chronous, thus spatially inhomogeneous. But temporally
evident from the bifurcation diagrams that large portions
the coupling parameter space support low order cycles
periodicity 2k, k51,2, . . . . The regions not supporting exa
cycles support noisy bands. The power spectrum of the n
bands is characterized by prominentd spikes atf 522k on a
broad background of noise. This feature can be seen in
7, which displays the power spectra for the mean field o
levels (n56,5,4,3) at e50.2, for model II in two-
dimensions withL56. This behavior is reminiscent of ‘‘pe
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FIG. 5. Plot of fixed point valuesxfixed
n vs level indexn for models withL57 ande50.6,0.7,0.8,0.9.
p

a

the
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ns.
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riodic chaos’’ in the logistic map where the iterates jum
from one band to another in a periodic fashion~e.g., for the
mapxn1154rxn(12xn) for r 50.898 143 . . .@18#.!

Another very interesting feature is the manner in which
initial phase point jumps from attractor to attractor ase is
n

varied, as a result of the many coexisting attractors, with
initial phase point lying in different basins of attraction fo
different values ofe. This is most marked in the range 0
<e<0.5, and is discernable even for very high resolutio
See Figs. 8~a!–8~d! for successively enlarged portions of th
FIG. 6. Detailed section of the bifurcation diagrams for model II, in one dimension, withL53, in the ranges 0.2<e<0.3. All four levels
in the hierarchy (n50,1,2,3) are depicted. These bifurcation diagrams are generated from one generic initial condition.
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e space. Very clearly they look similar, and in this sense
bifurcation diagram here is ‘‘self-similar’’ or ‘‘fractal,’’ re-
flecting fractal boundaries of the basins of attraction of t
coexisting attractors.

D. Weak coupling phase„0<e<0.15…

Now we operate in the region of parameter space wh
coupling is weak:e,0.15. Here, for both models, there is n
apparent synchronization, order, or correlation among the
ements of the different levels of the hierarchy, in either sp
or time. However, one finds that rough periodicities eme
in the time evolution of the mean field of the levels, th
effect being more pronounced at finer scales. Figures 9
10 show the power spectra of the mean fieldhn at the finest
hierarchy levelsn56,5,4,3 for models I and II in two dimen
sions, with number of levelsL56, at a representative value
of e. It is clearly evident that the mean field develops colle
tive beating patterns, which are manifested in promin
peaks in the power spectra.

Another feature of this phase is that the mean field qu
tities may show many pronounced fine structures in th
power spectrum, while the spectra of individual elements
broad and coarse. Figure 11 shows the spectrum of a si
element for model I in two dimensions at hierarchy lev
n56,5,4,3~L56, e50.075!. Compare this to Fig. 10, which
shows the spectrum of the mean field for the same level
seems clear then that for the finer levels~which have large
number of elements! the global quantity displays marke
periodic structure while the individual element reflects on
a coarse ‘‘ghost’’ of those periodicities. These broad peak
are strongly reminiscent of the enormous collective bea
vis a vis ‘‘chaotic’’ individual evolutions, seen in globally
coupled maps on very large regular lattices. For the gro
levels ~which have fewer elements!, however, the evolution
of the mean field simply reflects the evolution of the sing

FIG. 7. Power spectrum of the mean field of the four hierarc
cal levels:n53,4,5,6, for model II in two dimensions, withL56, at
e50.2. Here we average over 20 runs of length 1024 each.
abscissa has frequencyf and the ordinate has lnS(f ) whereS( f ) is
the power.
e

re

l-
e
e

nd
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t
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le
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element, very much like the situation for global coupling
small regular lattices.

Further, we investigate the statistical properties of
fluctuations of the mean field for the two models in th
phase, hoping to uncover signatures of the subtle correlat
among the levels in the hierarchy. Figures 12~a!, 12~b!,
13~a!, and 13~b! give the mean square deviation~MSD! ~for
models I and II, in one and two dimensions, respective!
with respect to the number of elementsN for theL11 levels
of the hierarchy, in the representative example ofe50.07.
@In one dimension the system has number of levelsL512,
and in two dimensions it hasL57. Note thatN5(2n)d, n
50,1, . . .L. SoN spans the range 1 to 4096 for the 1D ca
and spans the range 1 to 16 384 for the 2D case.# It is clearly
apparent that the MSD does not decrease in a statist
fashion~i.e., as1/N!. Instead it oscillates around a satura
tion value.This signals the emergence of some subtle co
lation among the chaotic elements at various levels in
hierarchy.

Note that globally coupled maps on regular lattic
showed this kind of ‘‘breakdown of the law of large num
bers’’ @1–9#. On the other hand local coupling on a hiera
chical Cayley tree@15# displayed clear 1/N statistical decay
of the deviations of the mean field with respect to number
sites on the tree. Also note that intrinsic fluctuations dec
statistically in coupled map lattices with local and rando
nonlocal connections of finite connectivity@19#. This indi-
cates that the nonstatistical features of the mean field dyn
ics that emerge in our models must arise from the effects
global coupling, which induces certain size independe
remnant fluctuations@1–9#.

IV. SUMMARY

In summary, we have constructed prototype models
globally coupled systems on lattices with space-time hie
chy. In our models fully chaotic dynamical elements at
certain level in the hierarchy are coupled to the levels imm
diately above and below in the hierarchy through their me
fields. We report the wealth of spatiotemporal phenome
our models yield and give detailed bifurcation diagrams
coupling parameter,e, space (0<e<1). Importantly~espe-
cially in the context of control! we find that over a large
range of reasonably high coupling (0.5,e<1) our models
quickly evolve to a spatially homogeneous~synchronous!
state where the dynamics is a fixed point, i.e., every elem
is temporally invariant. For moderate coupling 0.15,e
,0.5, we have spatial inhomogeneity~that is asynchronous
evolution! and temporal regularity, marked by the presen
of, either exact 2k, k51,2 . . . cycles, or noisy bands~char-
acterized by delta spikes on a noisy background in the po
spectra!. An interesting feature of this phase is the presen
of several coexisting attractors, with fractal basin boundar
For small coupling (e;0.1) our system, while temporally
chaotic and spatially nonhomogeneous, develops cer
broad periodicities in their mean field, especially at fin
scales. In addition, if one looks at the fluctuation of the me
field at various levels in the hierarchy in this phase, one fin
that the mean square deviation does not decrease as 1/N with

-

e
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FIG. 8. Detailed sections of the bifurcation diagrams for model I, in one dimension, withL53, in the ranges~a! 0.4<e<0.5; ~b!
0.46<e<0.47; ~c! 0.465<e<0.466, and~d! 0.4655<e<0.4656. Only leveln53 in the hierarchy is depicted. These bifurcation diagra
are generated from one generic initial condition.
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has
N, whereN is the number of elements at a particular lev
Instead it displays marked nonstatistical behavior with
deviations saturating~or even increasing! for high N, indi-
cating subtle collective correlations.
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APPENDIX

Here we discuss static and dynamic features of synch
nised~homogeneous! solutions.

as

FIG. 10. Power spectrum of the mean field of model II in tw
dimensions withL56, for the levelsn56,5,4,3 ate50.07. Here
we average over 20 runs of length 1024 each. The abscissa
frequencyf and the ordinate has lnS(f ) whereS( f ) is the power.
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Static solution

First we briefly analyze the steady state properties of
various levels of the hierarchy in models I and II. Let
denote the fixed point values of the levels byxfixed

n wheren is

FIG. 11. Power spectrum of a single element at leveln
56,5,4,3, for model I in two dimensions withL56, at e50.075.
Here we average over 20 runs of length 1024 each. The absciss
frequencyf and the ordinate has lnS(f ), whereS( f ) is the power.
e

the level index. Since the steady state conditions are spat
homogeneous we can drop the space indexr . Further, this
implies thathn[xfixed

n . So the static solutions for both mode
I and model II satisfy the same condition:

xfixed
n 5~12e! f ~xfixed

n !1
e

2
~xfixed

n111xfixed
n21!, ~A1!

where

f ~x!5122x2

satisfying the boundary conditions forn50 andn5L. Also
note here that the steady state condition, namely, Eq.~11!, is
identical for all dimensionalities as the coupling is global a
the synchronicity condition allows us to replace the me
field by xfixed

n at level n, as mentioned before. So theonly
parameters affecting the spectrum of steady state values
~a! the coupling strengthe, ~b! the number of levels in the
hierarchy, determined byL. It is obvious thate51 gives
xfixed

n 5xfixed
n115xfixed

n21 as a solution, with boundary conditio
hn2150 for n50 andhn1150 for n5L. Thus the steady
state fore51 is xfixed

n 50 for all n50,1¯L.
For fixed point values ofeÞ1 one has to numerically

solveL11 coupled nonlinear equations. We have checked
see that the solutions thus obtained are consistent with
values ofxfixed

n , at various values ofe, obtained via numeri-
cal simulations.

has
FIG. 12. Mean square deviation~MSD! of the mean field at a certain hierarchy level vs number of elementsN at that level„N
5(2n)d, where level indexn50,1,. . . ,L andd is the dimension… for model I ate50.07 in ~a! one dimension, withL512 ~N spans the
range 1 to 4096!; and ~b! two dimensions, withL57 ~N spans the range 1 to 16 384!. The dotted line gives the 1/N statistical prediction.
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FIG. 13. Mean square deviation~MSD! of the mean field at a certain hierarchy level vs number of elementsN at that level@N
5(2n)d, where level indexn50,1,. . . ,L andd is the dimension# for model II ate50.07 in ~a! one dimension, withL512 ~N spans the
range 1 to 4096!; and~b! two dimensions, withL57 ~N spans the range 1 to 163 384!. The dotted line gives the 1/N statistical prediction.
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Linear stability of the static solution

Now we investigate the linear stability of the static so
tion considering the dynamics of a small perturbati
$dx0,dx1, . . . ,dxL%. Note that we consider asynchrono
~level-by-level! updates here. So a small perturbation a
certain level will affect its neighboring level only if its leve
index is higher. This yields~for both models!

xfixed
n 1dxt11

n 5~12e!$122~xfixed
n 1dxt

n!2%

1
e

2
~xfixed

n111dxt
n11!.

Canceling the zeroth-order terms on both sides and retai
only first-order terms indx we find, using Eq.~4! and the
upper line of Eq.~7!,

dxt11
n 5~12e!~24xfixed

n !dxt
n1

e

2
dxt

n11. ~A2!

The transfer matrix connecting the perturbation vectors
successive times is a (L11)3(L11) bidiagonal matrix,
with diagonal entries

aii 524~12e!xfixed
i

and off-diagonal entries
a

ng

t

ai j 5
e

2

when j 5 i 11. The absolute values of the ofL11 eigenval-
ues of the above matrix areul

*
i u, i 51,2¯L11. Now ul

*
i u

,1 indicates stability, andul
*
i u.1 indicates linear instabil-

ity of the i th eigenmode. Negative eigenvalues mean that
corresponding mode oscillates while positive values indic
monotonic behavior.

Now the eigenvalues of a bidiagonal matrix are equal
its diagonal elements, and so we havel

*
i 524(1

2e)xfixed
i . Utilizing the fact thatxfixed

i ,0.5, for e.0.5, and
xfixed

i 50.5 ate50.5, we easily obtaine50.5 as the bifurca-
tion point, and 0.5,e<1 as the stable regime of the sp
tiotemporal fixed point.

This analytical conclusion agrees completely with the n
merical observations via simulations.

Synchronous updating algorithm

If one computed the mean field synchronously, one wo
obtain a different bifurcation diagram. Figure 14 shows o
typical case for comparison. In the figure we have plotted
iterates at various hierarchy levels for model I in one dime
sion. Comparing with the corresponding case evolved
asynchronous rules~Fig. 1!, it is clear that the real difference
lies in the highe range (0.5<e<1.0), in particular in the
stability properties of the fixed point regime@20#. It is evi-
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FIG. 14. Bifurcation diagrams for model I with synchronous updating rules (L53) in one dimension, over the entire range of coupli
strength: 0<e<1. All the four levels in the hierarchy (n50,1,2,3) are depicted. These bifurcation diagrams are generated from one g
initial condition.
r
g

re
he

dy-

ery
dent that asynchronous updating allows the spatiotempo
fixed point to retain stability for a larger range of couplin
strength, as compared with synchronous updating.

To account for this feature, we will briefly analyze he
the linear stability of the spatiotemporal fixed point for t
alcase of synchronous updating rules. Consider again the
namics of a small perturbation$dx0,dx1, . . . ,dxL%. Since
the dynamics is now synchronous, perturbations at ev
level will influenceboth their neighboring levels. This yields
~for both models!
s
FIG. 15. Spectrum of eigenvalues of the stability matrix for different values ofe, for a system withL57, evolving under synchronou
updating rules.



different
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FIG. 16. The highest and lowest eigenvalues of the stability matrix for systems evolving under synchronous updating rules, with
number of hierarchical levels:L52,3,. . . ,8, at two values of coupling strengths:e50.7 ~d!, 0.95 ~h!.
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xfixed
n 1dxt11

n 5~12e!$122~xfixed
n 1dxt

n!2%

1
e

2
~xfixed

n111dxt
n111xfixed

n211dxt
n21!.

Canceling the zeroth-order terms on both sides and retai
only first-order terms indx we find, using Eq.~4! and the
upper line of Eq.~7!,

dxt11
n 5~12e!~24xfixed

n !dxt
n1

e

2
~dxt

n111dxt
n21!.

~A3!

The transfer matrix connecting the perturbation vectors
successive times is a (L11)3(L11) tridiagonal matrix,
with diagonal entries

aii 524~12e!xfixed
i

and off-diagonal entries

ai j 5
e

2

ng

t

wheni 5 j 61. Again we have to study the absolute values
the of L11 eigenvalues of the above matrix:ul

*
i u, i

51,2¯L11.
We can easily, numerically, find the eigenvalues of t

above tridiagonal matrix. Figure 15 gives the spectrum
eigenvalues for different values ofe. Notice that the eigen-
values of the stability matrix increases linearly withe. The
bifurcation point~i.e., thee at whichul

*
i u first exceeds 1, for

somei ! obtained by this analysis agrees very well with tho
obtained via simulations.

Figure 16 gives the highest and lowest eigenvalues
systems with different number of hierarchical levelsL, for
two values of coupling strength. It is clear that asL is in-
creased the lowest and highestl

*
i tend towards definite lim-

its ~for instance, for e50.7, lupper;0.08, . . . , l lower;
21.26, . . . and for e50.95, lupper;0.82, . . . , l lower;
20.97, . . .!. These values then give the upper and low
bounds for the eigenvalues of the system for a particulae,
when L→`. The L11 eigenvalues are clustered with
these bounds. It is clearly evident that the bifurcation po
ebifur is dependent on the number of levels in the hierarchyL,
and tends to a limitingebifur as L→` (ebifur;0.91,. . . ).
Note that this is unlike the asynchronous updating c
where the bifurcation point is independent ofL, with ebifur

50.5. Comparing theebifur obtained from the two kinds o
updating rules, it is clear that asynchronous updating give
much larger parameter region of stable spatiotemporal fi
points ~and this is exactly what was observed in the num
ics!.
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