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We have constructed prototype models of globally coupled systems on lattices with space-time hierarchy. In
our models fully chaotic dynamical elements at a certain level in the hierarchy are coupled to the levels
immediately above and below in the hierarchy through their mean fields. We report the wealth of spatiotem-
poral phenomena our models yield and give detailed bifurcation diagrams in coupling paraensfece
(0=e=<1). We find that over a large range of strong coupling {0¢5<1) our models quickly evolve into a
spatiotemporal fixed point. We analyze the stability of this phase. For moderate couplirge®<165, we
have spatial inhomogeneity and temporal regularity, marked by the presence of, eitherfexeetl?2 . ..
cycles, or noisy band&haracterized by spikes on a noisy background in the power spécta interesting
feature of this phase is the presence of several coexisting attractors, with fractal basin boundaries. For small
coupling (e~0.1) we show that our system, while temporally chaotic and spatially nonhomogeneous, develops
certain broad periodicities in their mean field, especially at finer scales. In addition, if one looks at the
fluctuation of the mean field at various levels in the hierarchy in this phase, one finds that the mean square
deviation does not decrease abl With N, whereN is the number of elements at a particular level. Instead it
displays marked nonstatistical behavior with the deviations saturdtingeven increasingfor high N.
[S1063-651%98)09704-9

PACS numbd(s): 05.45+b

[. INTRODUCTION loids [12]. Furthermore, there are also physical situations
where both the temporal and the spatial scales are hierarchi-
Global coupling in dynamical systems yields a host ofcal. One important example of this is earthquake dynamics.
very novel features. This class of systems is of considerablEarthquakes arise from processes in the lithosphere, which
interest in modeling phenomena as diverse as Josephsane well characterized by hierarchical discreteness of struc-
junction arrays, multimode lasers, vortex dynamics, and eveture and dynamical time scald43]. Basically the litho-
evolutionary dynamics, biological information processingsphere presents a hierarchy of volumes or blocks that move
and neurodynamics. More generally global coupling appeartgelative to each other. The largest blocks are the tectonic
as a result of a mean field approach to the dynamics of displates (~10* km). They are divided into smaller blocks, like
tributed systems. The ubiquity of globally coupled phenom-shields or mountains. After 15-20 divisions we come to
ena has thus made it a focus of sustained research activiggrains of rock of mm scaléf not lesg. The relative move-
[1-10]. ment of the various blocks result in seismic activity. These
Now a wide range of phenomena, from turbulence tomovements occur on a hierarchy of time scales as well, rang-
earthquakes, involve aierarchy of spatial and temporal ing from ~1 to 10 min (elastic shocks days to months
scales Dynamics occurring on spatially hierarchical media (foreshocks and aftershogk® 100—-500 yearsmovement
are encountered in many physical processes. For instance,af plates. Therefore geophysical processes are strongly non-
has been a tenet of the classical view of forebrain organizdinear processes well described by space-time hierarchy.
tion that perceptual processing is performed via hierarchi- It is of relevance then to investigate global coupling em-
cally organized cortical components. This has important imbedded in a hierarchical space-time structure. The extensive
plications for memorized data structures and has practicatudies on globally coupled mafk-10], so far, have invari-
application in large data storage and retrieval capddify.  ably been defined on regular underlying lattic€Ehe only
Another well established example is fractal reaction kineticsexamples of attempts to put coupled maps on nonuniform
i.e., diffusion controlled reactions with geometrical con- lattices have been maps wiibcal diffusive coupling on spa-
straints, as found in heterogeneous kinetics. These can lially hierarchical lattices, such as Siempki gaskets14]
described by reactions on fractal domains, and find practicand Cayley treefl5].) Here we will incorporateylobal cou-
applications in reactions in pores of membranes, excitompling on a lattice that has a hierarchical structuréjrspace;
trapping in molecular aggregates, exciton fusion in composand in(ii) both space and time.
ite materials, and charge recombination in clouds and col- Thus, in our prototype model of hierarchical arrays of
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globally coupled maps, we bring together two separate con- /M=o, (n+1) 2)
cepts:(1) Global coupling, which has successfully captured

the essence of a variety of complex spatiotemporal behavidspatially, it implies that model | consists of a nested hierar-
with high connectivity, and?2) hierarchical lattices, which chy of d-dimensional cubes. Levelcubes contain 2level-
arise as a natural description for phenomena occurring on @+ 1) cubes, i.e., levet contains (2)¢ sites.

range of length and time scales. Our study, we then hope, For model I, which has both temporal and spatial hierar-
will allow one to gain insight into a previously unexplored chical scales, we have

range of spatiotemporal phenomena. JM_p 0 g gt @

Il. MODEL Spatially, it again implies that this model consists of a nested

As mentioned before, in contrast to the widely discussedvierarchy ofd-dimensional cubes. In addition, temporally,
globally coupled maps, we now incorporate global couplingthis means that the value ®f(r) is updated only once when
on a hierarchical lattice. We consider two cases: model Ix’;”(r) is updated twice.
with hierarchical structure in spa¢eelevant, for instance, in The global coupling arises from the interaction of the el-
neuronal activity and model I, which is hierarchical in both ements of a level with the mean fields of levels contiguous in
space and timérelevant, for example, for geophysical pro- the hierarchy. Incorporating this mean-field type interaction
cesses such as earthquakdés our models, space is discrete, term in the dynamics, we obtain the complete dynamical
time is discrete, and the state variable, which in physicakquation forx’(r) on leveln to be as follows:
systems could denote macroscopic quantities such as energy, For model I
temperature, pressure, fluid velocity or chemical concentra-

tion, is continuous. The elementary building block of our X (D =(1—e)fxNr)+ se(h?1+h"" Y, (@)
hierarchical system is the logistic map, which has wide-
spread relevance as a prototype of chaos: where
x,=f(x,)=1-ax?, —1=x=<1, O<a<2. (1) ~ 1 _
he = e () )
Here 7=0,1,2,... denotes the discrete time,s the dy-

namical variable, and the control parameter. In our simu- gnd
lations we choos&=2, which gives rise to fully chaotic
dynamics. Nt N+

Now we embed this elementary nonlinear dynamical ele- hz :Wzrxf (r). ©®)
ment in a space-time hierarchical lattice. The state variable
then will have three indices: space, time, and hierarchy laThis implies that the elements see an average of the mean
bels. Time, as in the local map, is labeled hySpace is field of the finer scale {+1) and the grosser scale (
labeled byr e 79, which denotes points on ddimensional —1). The boundary conditions are taken to be as follows:
cubic lattice. Hierarchy is indexed by, O<n<L. We asso- for leveln=L, h""1=0 and for leveih=0, h"~*=0, for all
ciate the largest with the smallestfines) scales. The scales 7. Also note that dimensionality simply has the effect of
on leveln, n=0,1,2,...,L are given by a typical length altering the number of elements at each level, since coupling
scale/(™ and a typical time scal&¥™. For simplicity we is global. The geometry of th&" lattice is not important.
choose for model I, which has only spatial hierarchy: For model II:

(1—e)f(x"(r))+2e(h?*1+h"" Y if 7=0(mod 2"~ M)

Xpiq(r)= X"(r) otherwise. 0

where (as it evolves twice as fast as level while seeing the same
mean field of the grosser scale;-1, for two evolutionary
W le— s %01 ®) steps(as it evolves half as sIow)y(Agftin, we take for level
T (2nhderty n=L, h"*1=0, and for leveln=0, h"~ =0, for all 7.
Further, the above equation for model Il means that each
and time there is a change on leve)} all levelsn with n>n,
L L will be updated as well. Table | shows the pattern of times
n+l_ n+1 n+1 when the upper line of E(q7) applies. In a system with
h 2 (2”*1)3[E’XT (N+2oc2 M1 ©) levels, updates on level are due at

This implies that the elements see an average of the mean
field of two consecutive time steps of the finer scale; 1 M(og)=2""¢, ¢=01.2,.... (10
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TABLE I. Times 7 at which the upper line of Ed7) applies for  domly in the interval —1,1]. We record the evolution of the

a system withL =3. state variableg”(r) and the mean fieltd] at each leveh in

the hierarchy, for different values of the coupling parameter

e. All results quoted in this paper, unless otherwise stated,

mr 01 23 456 7 8 9 10 11 12 13 14 15

0 X X are obtained using asynchronous level-by-level updates.

1 X X X X We now present, in the sections below, detailed bifurca-
> . x X X X X X X tion diagrams and d.escriptions of the different dynamical
3 % X X X X X X X X XX X x x x x bhasesthe models yield.

We call o the reduced time on level. Note that all time A. Bifurcation diagrams

series analysis will be with respect to the reduced tirmat We first give the bifurcation diagrams of the two models
each level in the hierarchy, i.e., we will be stroboscopicallywith respect to the entire range of coupling strength
sampling the state variable at its natural time scale. O<e<1. Figures 1 and 2 give the dynamical phases for

Note that in our study we update the levelsynchro- model | and model Il, respectively. It is clearly evident that
nously in a certain fixed order, with the sites at each levelfor both models two distinct regions emergd) 0.5<e
being updated in paralléhnalogous, for instance, to the situ- <1.0 where the system quickly evolves to a spatially syn-
ation in neuromorphology, where the neurons, neuron groupshronous and temporally invariant state for all initial condi-
and functional layers are fully asynchronpud/e start from  tions and(2) 0<e<0.5 where we have a variety of behav-
the spatially finest and dynamically fastest lewe: L, and iors. (At e=0.5 we have marginal stability, marked by very
go on to the grossegand slowestlevel: L=0. At each step long transients Note that these bifurcation diagrams have
we use thecurrent values ofx(i) to compute the effective been obtained using onlyne generic initial condition.
mean field via Egs.(5) and(6) for model |, and Eqs(8) and Figure 3 (for model ) and Fig. 4(for model Il) depict
(9) for model Il]. On the other hand, one can compute thebifurcation diagrams generated from a large set of random
mean field synchronously.e., at the beginning of each time initial conditions. So, while Figs. 1 and 2 basically give the
step and then update sites at all levels simultaneoli6}. stable attractors for a single typical initial phase point for
See Appendix(A3) for further analysis on the dynamical different values ofe, Figs. 3 and 4 give the set of all coex-

changes arising from differences in updating rules. isting attractors to which initial phase points can evolve. For
the fixed point attractor all initial conditions are attracted to
IIl. RESULTS spatiotemporal invariance. So bifurcation diagrams gener-

ated either way are identical. But for the second region,
For both our modelgl and Il), we start the numerical which supports mangoexisting attractorsthe two bifurca-
simulations with values ofg(r) (n=0,1,...,L) chosen ran- tion diagrams will necessarily be different, with Figs. 3 and 4
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FIG. 1. Bifurcation diagrams for model I, in one dimensigvith L =3), displaying the various dynamical phases, over the entire range
of coupling strength: & e<1. All four levels in the hierarchy(=0,1,2,3) are depicted. These bifurcation diagrams are generated from one
generic initial condition.



5220 SINHA, PEREZ, AND CERDEIRA 57

N LI (UL LA ™ s LSS LA L B A
™ ] o~ 3
I ] i
Z o5 1 =
[ L)
> a >
5 1k
5 0 i 5
e} - =]
3 1 2
=05 1 =
© ©
[ 7 @
E ] =
1 oo b v b b b 1 IS RN R RIS RS TR
0 02 04 06 08 1 0 02 04 06 08 1
€ €
19 T T T T [T T 1 LA B BB B
— i o ) 4
Il ] Il ™ b
Z o5 B 4 Fos : .
g 1 5 # 1
i 8 ¥
30 - 3
o g o i
3 ] 32 §
=05 -4 L -05 -
© o
[ N i h
E ] £ ]
1 I TSNS SRR N N B -1 I ERIR AN BVE S AR
0 02 04 06 038 1 0 02 04 06 08 1
€ €

FIG. 2. Bifurcation diagrams for model I, in one dimensiavith L = 3), displaying the various dynamical phases, over the entire range
of coupling strength: & e<1. All four levels in the hierarchyn(=0,1,2,3) are depicted. These bifurcation diagrams are generated from one
generic initial condition.

now giving the iterates of many superposed attractors. quite expected, as dimensionality, as mentioned before,

Also, note that dimensionality does not play an importantmerely changes the sizes of the clusters of maps driving each
role in this system; i.e., the bifurcation diagrams obtained foother through their mean fields, in our hierarchical array of
one and two dimensions are essentially the same. This imap ensembles.
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FIG. 3. Bifurcation diagrams for model I, in one dimensigvith L = 3), displaying the various dynamical phases, over the entire range
of coupling strength: & e<1. All four levels in the hierarchyr(=0,1,2,3) are depicted. These bifurcation diagrams are generated from a
sample of 25 random initial phase points.
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FIG. 4. Bifurcation diagrams for model I, in one dimensiavith L = 3), displaying the various dynamical phases, over the entire range
of coupling strength: & e<1. All four levels in the hierarchyr{=0,1,2,3) are depicted. These bifurcation diagrams are generated from a
sample of 25 random initial phase points.

We now give details of the dynamical phases below. chaotic systems, which is currently evoking considerable in-
terest[17], is essentially a search for systerfagorithms
B. Strong coupling phase(0.5<e<1.0) that yield stable synchronized states. So our models above
For both models | and I, wher is reasonably high have immediate relevance to this problem as it enables the
(0.5<e<1.0) we find that th,e system goes to a Spati(,i”ystabilization of large systems, not only spatial@s in previ-
homogeneous statat each level in the hierarchythat is, it  ©US €xamplesbut also temporally. So the emergence of syn-
is synchronous at all levels. Furthermore, temporally the syschronized fixed point dynamics from the space-time hierar-
tem dynamics goes tofixed point We give some features of chical global coupling of chaotic elements may have
the spectrum of steady state values below: practical utility in the control of macroscopically cascaded
First, note thata) xf,q for model | is identical to that for dynamical systems.
model Il, and(b) dimensionality does not affect the values of .
Xiked» @S long asL remains the samésee Appendix for C. Moderate coupling phase(0.15<€<0.5
analysis. Figure 5 shows thensteady state vaIu_es of the vari- For both modelgI and 1I), the region of moderate cou-
ous levels of the hierarchyg,eq versus level indexd (N pling in parameter space, 0:4%<0.5, is marked by spatial
=0,1,...L, L=7) for 4 values ofe: €=0.9,0.8,0.7,0.6. Itis inhomogeneity and temporal regularitfrhe e=0.5 is a bor-
evident that there is a symmetry in the fixed point values ofderline system, i.e., the stability of the fixed point state is

x" with respect to hierarchy level, namely,Xf, o= Xf.on - marginal here, and so its approach to steady state values is
This is a result of the symmetry in the boundary conditionscharacterized by very long transience.
namely,h, ;=0 for n=0, andh,, ;=0 for n=L, which Figure 6 displays a representative example for model ||

makes the form of the evolution equatiditsy. (4) for model  (in one dimension with L=3, in the range 0&e<0.3.
I and Eq.(7) for model 1] equivalent for the extrema levels, (The diagram again shows the attractor obtained from the
n=0 andL. Further, it is clear that the fixed point values are evolution of a single phase pointiere the system is asyn-
bounded between 0 and 0.5 for all valueseoln the limiting  chronous, thus spatially inhomogeneous. But temporally it is
case ofe=1.0 the entire system evolves x§=0 for all =  evident from the bifurcation diagrams that large portions of
andn (see Appendix the coupling parameter space support low order cycles of
The above scenario is very different from that encoun-periodicity 2, k=1,2,... . The regions not supporting exact
tered earlier in globally coupled maps on regular lattices. Ircycles support noisy bands. The power spectrum of the noisy
the previous models one obtained synchronous stdtes bands is characterized by prominghspikes atf =2~ on a
were spatially homogeneoudut evolving chaotically in  broad background of noise. This feature can be seen in Fig.
time. Here we obtain synchronous states at each level of thé, which displays the power spectra for the mean field of 4
hierarchy where every element becontesporally invari- levels (n=6,5,4,3) at e=0.2, for model Il in two-
ant as well. Now the problem of “controlling” extended dimensions withL=6. This behavior is reminiscent of “pe-
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riodic chaos” in the logistic map where the iterates jumpvaried, as a result of the many coexisting attractors, with the
from one band to another in a periodic fashi@ng., for the initial phase point lying in different basins of attraction for
map X, 1=4rx,(1—x,) for r=0.898 143...[18].) different values ofe. This is most marked in the range 0.4
Another very interesting feature is the manner in which an<e=<0.5, and is discernable even for very high resolutions.
initial phase point jumps from attractor to attractoreas  See Figs. 8)—8(d) for successively enlarged portions of the
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element, very much like the situation for global coupling on
small regular lattices.

Further, we investigate the statistical properties of the
fluctuations of the mean field for the two models in this
phase, hoping to uncover signatures of the subtle correlations
among the levels in the hierarchy. Figures(a&)2 12(b),

) B 13(a), and 13b) give the mean square deviati@dSD) (for
htoaloboo b oo U models | and Il, in one and two dimensions, respectively
0 01 02 03 04 05 .
n 1 with respect to the number of elemendor theL + 1 levels

RN AANAN SRS AR R of the hierarchy, in the representative examplesef0.07.
i [In one dimension the system has number of levets12,
and in two dimensions it has=7. Note thatN=(2")9, n
=0,1,...L. SoN spans the range 1 to 4096 for the 1D case
and spans the range 1 to 16 384 for the 2D ddsés clearly
apparent that the MSD does not decrease in a statistical
. B fashion(i.e., as1/N). Instead it oscillates around a satura-

w‘ el b tion value.This signals the emergence of some subtle corre-
o o1 0'2]n 0['3 04 08 0 ot 0‘21“ 0,‘3 04 08 lation among the chaotic elements at various levels in the
hierarchy.

In S(f) of level n = 6
In S(f) of leveln = 5

10 |-

In S(f) of level n = 4
In S({f) of level n = 3
2]
T

FIG. 7. Power spectrum of the mean field of the four hierarchi- ;
cal levels:n=3,4,5,6, for model Il in two dimensions, with=6, at Note that globally coupled maps on regular lattices

- showed this kind of “breakdown of the law of large num-
e—O._2. Here we average over 20_ runs of length 1024 eac_h. Th% . h her hand | | i hi 5
abscissa has frequenéyand the ordinate has B(f ) whereS(f) is e'rs [1-9]. On the ot .er and local coup Ir!g 'on a hierar
the power. chical Cayley treg15] displayed clear N statistical decay
of the deviations of the mean field with respect to number of
sites on the tree. Also note that intrinsic fluctuations decay
estatistically in coupled map lattices with local and random
nonlocal connections of finite connectivifit9]. This indi-
cates that the nonstatistical features of the mean field dynam
ics that emerge in our models must arise from the effects of
global coupling which induces certain size independent

remnant fluctuationgl—9|.
Now we operate in the region of parameter space where

coupling is weake<0.15. Here, for both models, there is no IV. SUMMARY

apparent synchronization, order, or correlation among the el-

ements of the different levels of the hierarchy, in either space In summary, we have constructed prototype models of
or time. However, one finds that rough periodicities emergeglobally coupled systems on lattices with space-time hierar-
in the time evolution of the mean field of the levels, thischy. In our models fully chaotic dynamical elements at a
effect being more pronounced at finer scales. Figures 9 anckrtain level in the hierarchy are coupled to the levels imme-
10 show the power spectra of the mean fieldat the finest diately above and below in the hierarchy through their mean
hierarchy level$1i=6,5,4,3 for models | and Il in two dimen- fields. We report the wealth of spatiotemporal phenomena
sions, with number of levels =6, at a representative values our models yield and give detailed bifurcation diagrams in
of e. It is clearly evident that the mean field develops collec-coupling parametere, space (6&e<1). Importantly(espe-
tive beating patterns, which are manifested in prominentially in the context of controlwe find that over a large
peaks in the power spectra _ _ range of reasonably high coupling (&c5<1) our models

_ _Another feature of this phase is tha_tt the mean flelq quanguickly evolve to a spatially homogeneoisynchronous
tities may show many pronounced fine structures in theiliaq where the dynamics is a fixed point, i.e., every element
power spectrum, while the spectra of individual elements arT-S temporally invariant. For moderate coupling 05

broad and coarse. Fi_gure 11 _shows_ the spectrum of a singgo 5, we have spatial inhomogeneityat is asynchronous
element for model | in two dimensions at hierarchy levels '

n=6,5,4,3(L=6, e=0.075. Compare this to Fig. 10, which evoll_Jtion) and temporal regularity, marke(_j by the presence
shows the spectrum of the mean field for the same levels. Rf’ e|_ther exact 2, k:_ 12... cycl_es, or noisy ban_d@har-
seems clear then that for the finer levélghich have large acterized by_delta sp|kes on a n0|sy_backgrou_nd in the power
number of elemenjsthe global quantity displays marked spectra. An mte_re_stlng feature of_th|s phase |s_the presence
periodic structure while the individual element reflects onIyOf several coexisting attractors, with fractal bgsm boundaries.
a coarse “ghost” of those periodicitiesThese broad peaks For small coupling €~0.1) our system, while temporally
are strongly reminiscent of the enormous collective beatinghaotic and spatially nonhomogeneous, develops certain
vis a vis “chaotic” individual evolutions, seen in globally broad periodicities in their mean field, especially at finer
coupled maps on very large regular lattices. For the grosseacales. In addition, if one looks at the fluctuation of the mean
levels (which have fewer elementshowever, the evolution field at various levels in the hierarchy in this phase, one finds
of the mean field simply reflects the evolution of the singlethat the mean square deviation does not decreaséNasitti

e space. Very clearly they look similar, and in this sense th
bifurcation diagram here is “self-similar” or “fractal,” re-
flecting fractal boundaries of the basins of attraction of the
coexisting attractors

D. Weak coupling phase(0<€<0.15
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0.46<€<0.47;(c) 0.465<€=<0.466, andd) 0.4655< ¢<0.4656. Only leveh=3 in the hierarchy is depicted. These bifurcation diagrams
are generated from one generic initial condition.
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FIG. 9. Power spectrum of the mean field of model | in two  FIG. 10. Power spectrum of the mean field of model Il in two
dimensions withL =6, for the levelsn=6,5,4,3 ate=0.075. Here  dimensions withL =6, for the levelsn=6,5,4,3 ate=0.07. Here
we average over 20 runs of length 1024 each. The abscissa has average over 20 runs of length 1024 each. The abscissa has
frequencyf and the ordinate has B(f ) whereS(f) is the power.  frequencyf and the ordinate has B(f ) whereS(f) is the power.
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7 T e promrm e Ty the level index. Since the steady state conditions are spatially
© ©7) - homogeneous we can drop the space indekurther, this
=8F a0 : implies thath"=xj,.q. SO the static solutions for both model
% s 5| ] | and model Il satisfy the same condition:
5| 55| -
= s = €
Al Xiea= (1= )T (XRed + 5 (ot Xhed) . (AD)

[ W WIS WS N RO Shlvemabovodhooas oy buon b

0 o041 0.2]n OI,B 04 05 0 01 0.2lll 0[.3 04 05 Where

LI I I I R R B I e A
-7 g o7 - f(x)=1—2x2
tof T |
H 2 satisfying the boundary conditions for=0 andn=L. Also
55 55 note here that the steady state condition, namely(ExL), is
S0 Sk identical for all dimensionalities as the coupling is global and
g g ] the synchronicity condition allows us to replace the mean

ST NI PN Bl b Lo Lo field by xf,oq at leveln, as mentioned before. So tiualy

0 01 02 03 04 05 0 01 02 03 04 05

0 o parameters affecting the spectrum of steady state values are

(a) the coupling strengtle, (b) the number of levels in the
FIG. 11. Power spectrum of a single element at lemel hierarchy, determined by. It is obvious thate=1 gives
=6,5,4,3, for model | in two dimensions with=6, ate=0.075.  xg = Xg;;é:xgx—eclj as a solution, with boundary condition
Here we average over 20 runs of length 1024 each. The abscissa g~ 1= for n=0 andh"t'=0 for n=L. Thus the steady
frequencyf and the ordinate has B(f ), whereS(f) is the power.  giate fore=1 is ngedzo foralln=0,1---L.

For fixed point values ofk#1 one has to numerically
solvel + 1 coupled nonlinear equations. We have checked to

First we briefly analyze the steady state properties of theee that the solutions thus obtained are consistent with the
various levels of the hierarchy in models | and II. Let usvalues ofxg,.q, at various values of, obtained via numeri-
denote the fixed point values of the levelsxtjy,q wherenis  cal simulations.

Static solution

In MSD

Lo v b s by g b v a Loy

L L L B L L R

o
N
n
[«2]
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o

In N
FIG. 12. Mean square deviatiofMSD) of the mean field at a certain hierarchy level vs number of eleming that level(N
=(2"¢, where level indexn=0,1,. .. ,L andd is the dimensionfor model | ate=0.07 in(a) one dimension, with.=12 (N spans the
range 1 to 4096 and (b) two dimensions, with.=7 (N spans the range 1 to 16 384 he dotted line gives the N/statistical prediction.
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FIG. 13. Mean square deviatiofMSD) of the mean field at a certain hierarchy level vs number of elemidntt that level[N
=(2”)d, where level indexn=0,1,. .. ,L andd is the dimensiohfor model Il ate=0.07 in(a) one dimension, with. =12 (N spans the
range 1 to 4096 and(b) two dimensions, with. =7 (N spans the range 1 to 163 38Zhe dotted line gives the lll/statistical prediction.

Linear stability of the static solution €
Now we investigate the linear stability of the static solu- &j=3
tion considering the dynamics of a small perturbation
{ox%6xt, ... ,8x"}. Note that we consider asynchronouswhenj=i+1. The absolute values of the bft-1 eigenval-
(level-by-leve) updates here. So a small perturbation at aues of the above matrix ata. |, i=1,2---L+1. Now |\} |
certain level will affect its neighboring level only if its level <1 indicates stability, angh! |>1 indicates linear instabil-
index is higher. This yield¢for both models ity of theith eigenmode. Negative eigenvalues mean that the

n no n 2 corresponding mode oscillates while positive values indicate

Xfixed T 8X1+1_ (1- 6){1_ Z(Xfixed+ 5)(7-) } monotonic behavior.
€ Now the eigenvalues of a bidiagonal matrix are equal to
+ E(x}};e}ﬁr oxh Ty, its diagonal elements, and so we have, =—4(1
— €)Xgxeq- Utilizing the fact thatxy,.4<0.5, for e>0.5, and

. . .. Xsoq=0.5 ate=0.5, we easily obtair=0.5 as the bifurca-
Canceling the zeroth-order terms on both sides and retalnm@ged € W Y ! iy

. ! . . n point, and 0.5Xe<1 as the stable regime of the spa-
only f|r_st-order terms inx we find, using Eq(4) and the tiotemporal fixed point.
upper line of Eq.(7),

This analytical conclusion agrees completely with the nu-
merical observations via simulations.
€

r;+1:(1_ 6)(_4xgxed) 5XI;+ 2

oxntL, (A2)
Synchronous updating algorithm
If one computed the mean field synchronously, one would
tain a different bifurcation diagram. Figure 14 shows one
typical case for comparison. In the figure we have plotted the
iterates at various hierarchy levels for model | in one dimen-
. sion. Comparing with the corresponding case evolved via
&= — 4(1— €)Xjixeq asynchronous rule@ig. 1), it is clear that the real difference
lies in the highe range (0.5:€=<1.0), in particular in the

and off-diagonal entries stability properties of the fixed point reginj2Q]. It is evi-

The transfer matrix connecting the perturbation vectors aBb
successive times is aL(-1)X(L+1) bidiagonal matrix,
with diagonal entries



3

Y

mean field of level n

mean field of level n

1

mean field of level n

HIERARCHICAL GLOBALLY COUPLED SYSTEMS

T 11 [ 1117 [ 1T 0 [ T T F [ 1T 77T
T | T |

II\lI\IlI\\lI\Il\II

0.2

04 06 08
€

.

PR S SR T A

oy 1 T T T T T

XX

/

mean field of level n = 0

o

[ % S

0.2

04 06 08
€

-

1""'|"'l"‘|"'

x X

[

x,
X;:/
L1

I PV

L1

TR INTERS N INRR N RIS A

0 02 04 06 08

€

pry

L L L L L

/

v b B b

AU SRTIREN RIS RN

0 02 04 06 08
€

uy

5227

FIG. 14. Bifurcation diagrams for model | with synchronous updating rules¥) in one dimension, over the entire range of coupling
strength: Gse<1. All the four levels in the hierarchyn(=0,1,2,3) are depicted. These bifurcation diagrams are generated from one generic

initial condition.

dent that asynchronous updating allows the spatiotemporatase of synchronous updating rules. Consider again the dy-
fixed point to retain stability for a larger range of coupling namics of a small perturbatiofivx?,8x*, ... ,6x'}. Since

strength, as compared with synchronous updating

the dynamics is now synchronous, perturbations at every

To account for this feature, we will briefly analyze here level will influenceboththeir neighboring levels. This yields
the linear stability of the spatiotemporal fixed point for the (for both model$

eigenvalues of the stability matrix

1

0.6 0.7 0.8
coupling strength ¢

FIG. 15. Spectrum of eigenvalues of the stability matrix for different values &dr a system with_=7, evolving under synchronous

updating rules.
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FIG. 16. The highest and lowest eigenvalues of the stability matrix for systems evolving under synchronous updating rules, with different
number of hierarchical leveld:=2,3,. . .,8, at two values of coupling strengths=0.7 (@), 0.95(0J).

Xiheat OXM, 1= (1— €){1—2(xf, g+ 6X1)2} wheni=j* 1. Again we have to study the absolute values of
the of L+1 eigenvalues of the above matrifA} |, i
=1,2L+1.

We can easily, numerically, find the eigenvalues of the
above tridiagonal matrix. Figure 15 gives the spectrum of
eigenvalues for different values ef Notice that the eigen-

) ] . values of the stability matrix increases linearly wihThe
Canceling the zeroth-order terms on both sides and retainingic - cation pointi.e., thee at which|)', | first exceeds 1, for
only f|r§t-order terms idx we find, using Eq(4) and the somei) obtained by this analysis agrees very well with those
upper line of Eq.(7), ) A .
obtained via simulations.
Figure 16 gives the highest and lowest eigenvalues for
systems with different number of hierarchical levéls for

€
N1 Nl un—1 n-1
+ §(Xﬁxed+ OX7 " Xfixed T OX; 7).

N =(1— €)(—4xD ) X"+ E(b‘x';“+ 5)(271)_ two values of coupling st_reng.th. It is clear that las_is |n
2 creased the lowest and highagt tend towards definite lim-
(A3)  its (for instance, for €=0.7, Npper~0.08..., Njgwer™

—1.26... and for €=0.95 Nypper~0.82..., Njower™
The transfer matrix connecting the perturbation vectors at-0.97...). These values then give the upper and lower
successive times is aL@-1)x(L+1) tridiagonal matrix, bounds for the eigenvalues of the system for a particelar
with diagonal entries when L—o. The L+1 eigenvalues are clustered within
these bounds. It is clearly evident that the bifurcation point
€pifur IS dependent on the number of levels in the hieraichy
a;= _4(1_6)Xifixed and tends tq a Iimitir;gebifur as L—oo (epin,~0.91,. - ).
Note that this is unlike the asynchronous updating case
where the bifurcation point is independent lof with e,
and off-diagonal entries =0.5. Comparing the,, obtained from the two kinds of
updating rules, it is clear that asynchronous updating gives a
much larger parameter region of stable spatiotemporal fixed
€ points (and this is exactly what was observed in the numer-
a;; ) ics).
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