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We investigate synchronization in a Kuramoto-like model with nearest neighbor coupling. Upon
analyzing the behavior of individual oscillators at the onset of complete synchronization, we show
that the time interval between bursts in the time dependence of the frequencies of the oscillators
exhibits universal scaling and blows up at the critical coupling strength. We also bring out a key
mechanism that leads to phase locking. Finally, we deduce forms for the phases and frequencies at
the onset of complete synchronization. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3056047�

Weakly coupled oscillators play an important role in un-
derstanding collective behavior of large populations.
They are often used to model the dynamics of a variety of
systems that arise in nature, even though they are quite
different. Synchronization is one of the interesting phe-
nomena observed in these systems where the interacting
oscillators under the influence of coupling would have a
common frequency. Particularly, these systems show an
extremely complex clustering behavior as a function of
the coupling strength. In spite of their differences, the
above-mentioned systems can be described using simple
models of coupled phase equations such as the Kuramoto
model. This paper analyzes the behavior of individual os-
cillators in the vicinity of the critical coupling where all
the oscillators evolve in synchrony with each other.

I. INTRODUCTION

Systems of coupled oscillators can describe problems in
physics, chemistry, biology, neuroscience, and other disci-
plines. They have been widely used to model several phe-
nomena, such as Josephson junction arrays, multimode la-
sers, vortex dynamics in fluids, biological information
processes, and neurodynamics.1–3 These systems have been
observed to synchronize themselves to a common frequency
when the coupling strength between these oscillators is
increased.4–13 The synchronization features of many of the
above-mentioned systems, in spite of the diversity of the
dynamics, might be described using simple models of
weakly coupled phase oscillators such as the Kuramoto
model.8,14

Finite range interactions are more realistic for the de-
scription of many physical systems, although finite range
coupled systems are difficult to analyze and to solve analyti-

cally. However, in order to figure out the collective phenom-
ena when finite range interactions are considered, it is of
fundamental importance to study and to understand the near-
est neighbor interactions, which is the simplest form of the
local interactions. In this context, a simplified version of the
Kuramoto model with nearest neighbor coupling in a ring
topology, which we shall refer to as the locally coupled
Kuramoto model �LCKM�, is a good candidate to describe
the dynamics of coupled systems with local interactions such
as Josephson junctions, coupled lasers, neurons, chains with
disorders, multicellular systems in biology, and in communi-
cation systems.6,14–16 For instance, it has been shown that the
equations of the resistively shunted junction which describe
a ladder array of overdamped, critical-current disordered Jo-
sephson junctions that are current biased along the rungs of
the ladder can be expressed by a LCKM.17 In nearest neigh-
bor coupled Rössler oscillators, the phase synchronization
can be described by the LCKM.18 Therefore, LCKM can
provide a way to understand phase synchronization in
coupled systems, for example, in locally coupled lasers,19,20

where local interactions are dominant. Coupled phase oscil-
lators described by LCKM can also be used to model the
occurrence of travelling waves in neurons.6,21 In communi-
cation systems, unidirectionally coupled Kuramoto model
can be used to describe an antenna array.22 Such unidirec-
tionally coupled Kuramoto models can be considered as a
special case of the LCKM and it often mimics the same
behavior.

One of the important features of the local model is that
the properties of individual oscillators can be easily analyzed
to study the collective dynamics while one has to rely on the
average quantities, in a mean field approximation, or by
means of an order parameter, etc., as in the case of the usual
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Kuramoto model of long range interactions. Therefore, due
to the difficulty in applying standard techniques of statistical
mechanics, one should look for a simple approach to under-
stand the coupled system with local interactions by means of
numerical study of a temporal behavior of the individual
oscillators. Such analysis is necessary in order to obtain a
close picture of the effect of the local interactions on syn-
chronization. In this case, numerical investigations can assist
one to figure out the mechanism of interactions at the stage
of complete synchronization, which in turns help to obtain an
analytic solution. Earlier studies on the LCKM show several
interesting features including tree structures with synchro-
nized clusters, phase slips, bursting behavior, saddle-node
bifurcation, and so on.23–25 There have been studies showing
that neighboring elements share dominating frequencies in
their time spectra, and that this feature plays an important
role in the dynamics of formation of clusters in the local
model.26,27 It has been found that the order parameter, which
measures the evolution of the phases of the nearest neighbor
oscillators, becomes maximum at the partial synchronization
points inside the tree of synchronization.28 Very recently, we
developed a scheme based on the method of Lagrange mul-
tipliers to estimate the critical coupling strength for complete
synchronization in the local Kuramoto model with different
boundary conditions.29

In this paper we address the mechanism that leads to a
complete synchronization in the Kuramoto model with local
coupling. This is done by analyzing the behavior of each
individual oscillators at the onset of synchronization. For this
purpose we consider the equations governing the phase dif-
ferences at the onset of synchronization. In particular, we
identify that the cosine of only one among the phase differ-
ences becomes zero. Based on this property we derive the
expression for the time interval between bursting behavior of
the instantaneous frequencies of each individual oscillators
in the vicinity of critical coupling strength. Our analysis
shows that the transition to complete synchronization occurs
due to a saddle-node bifurcation in agreement with the ear-
lier studies. Further, we deduce the expressions for the
phases and frequencies of the individual oscillators at the
onset of complete synchronization.

This paper is organized as follows. In Sec. II we present
a brief overview on the dynamics of local Kuramoto model.
We then analyze the behavior of the phase differences and
the time interval between successive bursts at the transition
to complete synchronization. In particular, we point out the
mechanism that lead to complete phase locking at the critical
coupling strength. Based on this, we deduce the forms of
phases and frequencies at the onset of synchronization. Fi-
nally, in Sec. III we give a summary of the results and con-
clusions.

II. BEHAVIOR OF PHASES AND FREQUENCIES
AT THE ONSET OF SYNCHRONIZATION

Even when there has been an extensive exploration of
the dynamics of the Kuramoto model �global coupling
among all oscillators�, the local model of nearest neighbor
interactions, which can be considered as a diffusive version

of the Kuramoto model, has been receiving attention only
recently. The LCKM is expressed as25–29

�̇i = �i +
K

3
�sin��i+1 − �i� + sin��i−1 − �i�� , �1�

where �i are the natural frequencies, K is the coupling

strength, �i is the instantaneous phase, �̇i is the instantaneous
frequency, and i=1,2 , . . . ,N. Many interesting features of
the LCKM remain unknown, especially an analytic
solution,14 which would be of great importance in under-
standing the mechanism that leads to synchronization. In or-
der to find such an analytic solution, one should study care-
fully the temporal evolution of frequency and phase of each
individual oscillator in the neighborhood of the critical cou-
pling for complete synchronization.

If we consider the oscillators in a ring, with periodic
boundary conditions �i+N=�i, the nonidentical oscillators �1�
cluster in time averaged frequency until they completely syn-
chronize to a common value of the average frequency �0

= �1 /N��i=1
N �i, at a critical coupling Kc.

24–26,28,29 At K�Kc,
the phases and the frequencies are time independent and all
the oscillators remain synchronized. In Fig. 1, we show the
synchronization tree for a periodic system with N=15 oscil-
lators, where the elements which compose each one of the
major clusters that merge into one at Kc are indicated in each
branch.

In terms of phase differences �i=�i+1−�i, system �1� can
be rewritten as

�̇i = �i+1 − �i +
K

3
�sin �i−1 − 2 sin �i + sin �i+1� , �2�

with �̇
i
*=0 at Kc for i=1,2 , . . . ,N. In addition, all quantities

�̇
i
*, �

i
*, and �̇

i
*, which become time independent25,26,28,29 at

the critical coupling, remain like that for k�Kc, when �̇
i
*

=0 and �̇
i
*=�0. Earlier attempts to obtain a solution of Eq.

�2� show that for only two oscillators which have phase dif-
ference �

l
*=�

l
*−�

l−1
* , results in �sin �

l
*�=1,23 and indeed this

is a necessary condition for Eq. �2� to have a phase-locked
solution. This fact has been used by Daniels et al.17 to esti-
mate the value of critical coupling strength Kc at which the
transition to complete synchronization occurs. However, the
determination of which two oscillators among N oscillators
that have �sin �

l
*�=1, remains difficult. From the study of the

temporal evolution of phases and frequencies of each indi-

N = 15

(7 - 13)

(14 - 6)

Kc

K

�θ̇
�

543210
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1

0

FIG. 1. �Color online� Synchronization tree for a system of 15 oscillators.
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vidual oscillator, it has also been found numerically that, at

the onset of synchronization K�Kc, the values of �̇i�t� and

�̇i�t� remain equal to �0 and zero, respectively, for a certain
time interval T. During this time T, a stable phase-locked
solution exists; then they burst,18,24,25 and this stable phase-
locked solution is lost. In between bursts, the phases remain
fixed and then they have an abrupt change �phase-slip behav-
ior� by an amount which depends on the initial values of the
frequencies �i,

24,25 corresponding to the burst in the frequen-

cies, while the quantities �i=1
N �i=0 and �i=1

N �̇i=0 are always
preserved by the topology. Integrated with the above infor-
mation, it has been shown by numerical investigation that the
time interval T blows up as K becomes close to Kc and T→�

at Kc. All this information leads one to conclude that there is
a saddle-node bifurcation at Kc, and the synchronization-
desynchronization transition at the critical coupling can be
interpreted using this knowledge.

In this work, we perform numerical investigations of the
temporal evolution of the phases and frequencies for the in-
dividual oscillators in order to arrive to specific conditions
which will lead to criteria to obtain an analytic solution. A
detailed study of all quantities sin �

i
* at Kc for several values

of N and for different sets of �i, shows that there is only one
value of phase difference between two neighboring oscilla-
tors �

l
*=�

l+1
* −�

l
* for which �sin �

l
*�=1, while for all other

values �sin �
i
*��1, i� l. In Fig. 2, we show sin �

i
* for a case

of N=15 as time progresses at the critical coupling Kc, with
the same initial frequencies of Fig. 1. We see that the value
of �sin �

l
*�=1, is for l=13 and that this quantity �sin �

l
*�=1

holds for only one value of phase difference �l=� /2, where
these two oscillators l+1 and l belong to different clusters,
and these two nearest neighbors oscillators are always at the
borders between the major clusters that merge at Kc, which
can be seen from Fig. 1. We find the same result for different
initial frequencies �i and for different values of N. In addi-
tion, the sign of sin �

l
* is negative for �l��l+1 and positive

for the reverse.
The knowledge of the burst and phase slip �in the vicin-

ity of Kc� of the quantities �̇i�t� and �i�t�, respectively, as
well as the finding of �sin �

l
*�=1 �at Kc�, will allow us to

rewrite equation �2�, for the index l as

�̇l = B�A − 2 sin �l� , �3�

where A=3���l+1−�l�� /K+sin �l−1+sin �l+1 and B=K /3.
Equation �3� takes the form of a phase synchronization of
two coupled limit-cycles.30 At Kc, �

l
*= 	� /2, �

l−1
* and �

l+1
*

are constants and time independent, and A=2. A detailed
numerical study shows also that, at the onset of synchroni-
zation, A�2 and the values of �l, �l−1, and �l+1 remain
equal to their values at Kc, for a time interval T. The values
of Kc and A for different numbers of oscillators N from nu-
merical simulations are tabulated in Table I. It is clear that in
all the cases, A�2 when K approaches Kc. The relation
A�2 is found to be valid for different choices of initial
frequencies �i for each N in the vicinity of Kc. Further, it
should be noted that when the time interval T→�, one can
find that A=2. The time interval T can be found analytically,
according to Eq. �3�, to be

T �
3�	2

K	A

1
	A − 2

. �4�

In Fig. 3, we clearly see that T blows up as A becomes close
to 2 �where K goes to Kc�, for the case of N=15. We find that
T blows up as �A−2�−0.5, which is a numerical proof that a
saddle-node bifurcation occurs at Kc. Assuming that sin �l−1

and sin �l+1 remain constant for a time interval T in the
vicinity of Kc, and are equal to their values at Kc �which has
been verified numerically�, we find that AK /2�Kc. Table II
shows this fact where the error is small and decreases as K
approaches Kc. Therefore, Eq. �4� takes the form

N = 15sin φl = sin φ13

time ×102

si
n

φ
i

50403020100

1

0.5

0

-0.5

-1

FIG. 2. �Color online� Values of sin �i at K�Kc for a system of 15 oscil-
lators �see Fig. 1�.

TABLE I. Calculated values of Kc and A for different values of N.

N Kc A

3 0.850 412 27 1.9994
5 3.170 827 13 2.0001

10 3.547 010 35 1.9996
15 3.870 238 66 2.0000
20 4.958 300 14 2.0002
25 3.641 060 38 1.9989
50 9.457 200 49 1.9993

100 12.723 208 7 1.9985

N = 15

slope = −0.5 ± 0.02

log(A − 2)

lo
g
T

-2-4-6-8

5

4

3

2

1

FIG. 3. �Color online� log10 T vs log10�A−2�, which shows the divergence
of the time interval T when A approaches 2 with a slope �−0.5.
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T �
3�

	2	Kc
	Kc − K

. �5�

Thus, within a good approximation, the periodic time inter-
val T blows up as �Kc−K�−0.5, in good agreement with the
numerical calculation by Zheng et al.,24,25 showing that a
saddle-node bifurcation occurs at Kc.

23

Therefore, Eq. �3� can be written as

�̇l � L�Kc − K sin �l� , �6�

which can be solved analytically, and its solution reads

�l � 2 arctan

 tan� 1
2
Lt� 	 K

Kc
� �7a�

and

�̇l �
L

Kc


2 sec2� 1
2
Lt�

1 + � 1

Kc


 tan
1

2

Lt� 	 K��2

, �7b�

where 
=	Kc
2−K2 and L= 2

3 . Equations �7a� and �7b� show
that, at Kc, the values sin �

l
*= 	1, which lead to �̇

l
*=0. It

can also be seen that in the vicinity of Kc, sin �l= 	1 and
�̇l=0 for a period T. The ��� sign in Eqs. �7a� and �7b�
corresponds to the case �l+1��l and the ��� sign for the
reverse.

In order to understand the mechanism of full synchroni-
zation which occurs at Kc, we use the fact that sin �

l
*= 	1

and each �̇
i
*=�0, where these quantities remain unchanged

for T in the vicinity of Kc. Hence, from system �1�, we are
able to obtain the following relations:

sin �
l+m
* =

3

Kc
�
m=1

N−l

��0 − �l+m� 	 sin �
l
*, �8a�

sin �
l−n
* = −

3

Kc
�
n=1

l−1

��0 − �l−n−1� 	 sin �
l
*. �8b�

Using this fact, we write the following equations, in addition
to Eqs. �7a� and �7b�:

�l−n � sin−1�an 	 sin �l� , �9a�

�̇l−n �
cos �l�̇l

	1 − �an 	 sin �l�2
, �9b�

�l+m � sin−1�am 	 sin �l� , �9c�

�̇l+m �
cos �l�̇l

	1 − �am 	 sin �l�2
, �9d�

where an= �−3 /Kc��i=1
n ��0−�l−i−1� with n=1,2 ,3 , . . . , l−1

and am= �3 /Kc�� j=1
m ��0−�l+j� with m=1,2 ,3 , . . . ,N− l. It is

clearly seen that according to the above equation, each �i

can be expressed in terms of �l and, consequently, each �̇i

can be expressed in terms of �l and �̇l. Therefore, all values
of �i will be shifted from each other by some constant which
is determined by the location of the indexes l−n and l+m
relative to oscillators with indexes l and l+1. This is shown
in Fig. 2, where sin �i values are shifted from each other at
Kc. Therefore, at Kc, what occurs to �l and �̇l due to saddle-
node bifurcation diffuses through the ring via interaction be-
tween neighboring oscillators. This means that, at the vicin-
ity of Kc, the value of �l has an abrupt change after being
constant for a time T, caused by a burst behavior of �̇l after
being zero for the same time interval T. The abrupt change in
�l produces a sudden change in the values of �i of their
neighbors, while the bursting behavior of �̇l in turn yields
bursts in �̇i �i� l�. In order to demonstrate this fact, we plot
the temporal evolution of �̇13 and �̇6, in the vicinity of Kc,
according to numerical simulation of Eq. �1� in Fig. 4�a�,
while we plot both quantities according to Eqs. �7b� and �9b�
in Fig. 4�b�. As shown in Fig. 4, the results of numerical
simulation agree with that from the analytic solution. The
above-mentioned behavior is reflected in the time depen-

dence of the �̇i�s, which in turn remain equal to �0 for a time
T and burst around �0 corresponding to the burst of �l.
Henceforward, we argue that it is the behavior of �l and �̇l

which drives the system to fall into full synchronization.

TABLE II. Calculated values of AK /2 for N=15 oscillators at the vicinity of
Kc=3.870 238 658.

K A
AK

2
�Kc−K�

3.869 480 136 2.000 700 0 3.870 834 454 5.960
10−4

3.870 198 414 2.000 035 0 3.870 266 142 2.750
10−5

3.870 226 709 2.000 010 0 3.870 246 060 7.402
10−6

3.870 237 122 2.000 001 0 3.870 238 909 2.480
10−7

3.870 238 325 2.000 000 3 3.870 238 727 6.920
10−8

(a)

φ̇6

φ̇13

992
T

φ̇

50403020100

4

2

0

-2

-4

(b)

φ̇6

φ̇13

989
T

time ×102

φ̇

50403020100

4

2

0

-2

-4

FIG. 4. �Color online� Time evolution of �̇13 and �̇6 according to �a� system
�1� and �b� Eqs. �7b� and �9b�, at K=3.870 226 709, for 15 oscillators with
the same initial conditions of Fig. 1.
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III. SUMMARY AND CONCLUSIONS

In summary, we have analyzed the conditions on the
phase differences for the onset of complete synchronization
at the critical coupling strength in a Kuramoto-like model
with nearest neighbor coupling. Such a condition, which is
�sin �

l
*�=1 �or cos �

l
*=0�, allows us to solve the equations of

the phase differences � Eq. �2�� analytically. We also found
that full synchronization occurs always when the quantity
A=2 at Kc. Due to the diffusive nature of the LCKM, com-
plete synchronization of all oscillators to a common value
can be interpreted and understood once we have analytic
forms for �l and �̇l. However, it is still difficult to determine
analytically the number of oscillators in each cluster which
merge into one at Kc. Therefore, one cannot allocate straight-
forwardly the two nearest neighbor oscillators which would
have �sin �

l
*�=1. On the other hand, a detailed numerical

study on the temporal evolution of phases, phase differences,
and frequencies of oscillators at the borders of the clusters
that merge into larger one at onset of complete synchroniza-
tion helps us to determine the neighboring oscillators which
have sin �

l
*= 	1. Such analysis can also be used to under-

stand the partial synchronization that leads to the formation
of small clusters for coupling strengths below the critical
coupling strength Kc. Of course, analysis of the simplest case
of locally coupled phase oscillators can help to understand
models with local interactions where amplitudes and phases
are included.15,18–20 In such cases, a detailed study of the
time evolution of amplitudes and phases can reveal a better
understanding of the mechanism of synchronization. The
present analysis can also be applicable to models in higher
dimensions such as that for dislocations in solids which in-
cludes local nearest neighbor interactions.31 Furthermore, the
present approach can be extended to understand the underly-
ing mechanism in the case of locally coupled Kuramoto
models with time delay6 �or phase delay� introduced between
the coupled oscillators. In addition, the mechanism of syn-
chronization in LCKM for open and fixed boundaries can be
studied in a similar manner to the present work as well as for
the case of unidirectional LCKM. We also want to mention
that the scaling law given by Eq. �5� has been found experi-
mentally in a transition to phase synchronization in CO2

lasers32 and in electronic circuits.33,34 On the other hand, one
cannot make a direct comparison between the mechanism of
synchronization discussed here in LCKM and the scaling law
that has been found in experiments since the physical sys-
tems are not necessarily the same.
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